氧传感器PHD2通过对细丝蛋白A的修饰来控制树突棘和突触。
The Oxygen Sensor PHD2 Controls Dendritic Spines and Synapses via Modification of Filamin A.
作者信息
Segura Inmaculada, Lange Christian, Knevels Ellen, Moskalyuk Anastasiya, Pulizzi Rocco, Eelen Guy, Chaze Thibault, Tudor Cicerone, Boulegue Cyril, Holt Matthew, Daelemans Dirk, Matondo Mariette, Ghesquière Bart, Giugliano Michele, Ruiz de Almodovar Carmen, Dewerchin Mieke, Carmeliet Peter
机构信息
Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium.
Laboratory of Theoretical Neurobiology and Neuroengineering, University of Antwerp, 2610 Wilrijk, Belgium.
出版信息
Cell Rep. 2016 Mar 22;14(11):2653-67. doi: 10.1016/j.celrep.2016.02.047. Epub 2016 Mar 10.
Neuronal function is highly sensitive to changes in oxygen levels, but how hypoxia affects dendritic spine formation and synaptogenesis is unknown. Here we report that hypoxia, chemical inhibition of the oxygen-sensing prolyl hydroxylase domain proteins (PHDs), and silencing of Phd2 induce immature filopodium-like dendritic protrusions, promote spine regression, reduce synaptic density, and decrease the frequency of spontaneous action potentials independently of HIF signaling. We identified the actin cross-linker filamin A (FLNA) as a target of PHD2 mediating these effects. In normoxia, PHD2 hydroxylates the proline residues P2309 and P2316 in FLNA, leading to von Hippel-Lindau (VHL)-mediated ubiquitination and proteasomal degradation. In hypoxia, PHD2 inactivation rapidly upregulates FLNA protein levels because of blockage of its proteasomal degradation. FLNA upregulation induces more immature spines, whereas Flna silencing rescues the immature spine phenotype induced by PHD2 inhibition.
神经元功能对氧水平的变化高度敏感,但缺氧如何影响树突棘形成和突触发生尚不清楚。在此我们报告,缺氧、对氧感应脯氨酰羟化酶结构域蛋白(PHDs)的化学抑制以及Phd2的沉默会诱导不成熟的丝状伪足样树突突起,促进棘突消退,降低突触密度,并独立于缺氧诱导因子(HIF)信号传导降低自发动作电位的频率。我们确定肌动蛋白交联蛋白细丝蛋白A(FLNA)是介导这些效应的PHD2的一个靶点。在常氧条件下,PHD2使FLNA中的脯氨酸残基P2309和P2316羟基化,导致冯·希佩尔-林道(VHL)介导的泛素化和蛋白酶体降解。在缺氧条件下,由于蛋白酶体降解受阻,PHD2失活迅速上调FLNA蛋白水平。FLNA上调诱导更多不成熟棘突,而Flna沉默可挽救由PHD2抑制诱导的不成熟棘突表型。
相似文献
Eur J Pharm Sci. 2013-3-15
Am J Physiol Heart Circ Physiol. 2017-6-1
引用本文的文献
Biochem J. 2024-7-3
J Cell Biol. 2023-8-7
Front Cell Neurosci. 2022-11-11
Adv Sci (Weinh). 2022-8
本文引用的文献
Front Neural Circuits. 2014-7-1
Proc Natl Acad Sci U S A. 2014-2-3
Hippocampus. 2013-6-6
Trends Biochem Sci. 2012-11-28