Suppr超能文献

睡眠期间网络振荡对海马体放电的调节

Regulation of Hippocampal Firing by Network Oscillations during Sleep.

作者信息

Miyawaki Hiroyuki, Diba Kamran

机构信息

Department of Psychology, Box 413, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.

Department of Psychology, Box 413, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.

出版信息

Curr Biol. 2016 Apr 4;26(7):893-902. doi: 10.1016/j.cub.2016.02.024. Epub 2016 Mar 10.

Abstract

It has been hypothesized that waking leads to higher-firing neurons, with increased energy expenditure, and that sleep serves to return activity to baseline levels. Oscillatory activity patterns during different stages of sleep may play specific roles in this process, but consensus has been missing. To evaluate these phenomena in the hippocampus, we recorded from region CA1 neurons in rats across the 24-hr cycle, and we found that their firing increased upon waking and decreased 11% per hour across sleep. Waking and sleeping also affected lower- and higher-firing neurons differently. Interestingly, the incidences of sleep spindles and sharp-wave ripples (SWRs), typically associated with cortical plasticity, were predictive of ensuing firing changes and were more robustly predictive than other oscillatory events. Spindles and SWRs were initiated during non-REM sleep, yet the changes were incorporated in the network over the following REM sleep epoch. These findings indicate an important role for spindles and SWRs and provide novel evidence of a symbiotic relationship between non-REM and REM stages of sleep in the homeostatic regulation of neuronal activity.

摘要

据推测,清醒会导致神经元放电增加,能量消耗增加,而睡眠则使活动恢复到基线水平。睡眠不同阶段的振荡活动模式可能在此过程中发挥特定作用,但尚未达成共识。为了评估海马体中的这些现象,我们在24小时周期内记录了大鼠CA1区神经元的活动,发现它们在清醒时放电增加,在睡眠期间每小时减少11%。清醒和睡眠对低放电和高放电神经元的影响也不同。有趣的是,通常与皮质可塑性相关的睡眠纺锤波和尖波涟漪(SWRs)的发生率可预测随后的放电变化,并且比其他振荡事件的预测性更强。纺锤波和SWRs在非快速眼动睡眠期间开始,但这些变化在随后的快速眼动睡眠阶段被整合到网络中。这些发现表明纺锤波和SWRs具有重要作用,并为非快速眼动睡眠和快速眼动睡眠阶段在神经元活动稳态调节中的共生关系提供了新证据。

相似文献

1
Regulation of Hippocampal Firing by Network Oscillations during Sleep.
Curr Biol. 2016 Apr 4;26(7):893-902. doi: 10.1016/j.cub.2016.02.024. Epub 2016 Mar 10.
2
Coordination of Human Hippocampal Sharpwave Ripples during NREM Sleep with Cortical Theta Bursts, Spindles, Downstates, and Upstates.
J Neurosci. 2019 Oct 30;39(44):8744-8761. doi: 10.1523/JNEUROSCI.2857-18.2019. Epub 2019 Sep 18.
3
Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States.
J Neurosci. 2017 Dec 6;37(49):11789-11805. doi: 10.1523/JNEUROSCI.2291-17.2017. Epub 2017 Oct 31.
4
Hippocampal information processing across sleep/wake cycles.
Neurosci Res. 2017 May;118:30-47. doi: 10.1016/j.neures.2017.04.018. Epub 2017 May 12.
5
Comparison of sleep spindles and theta oscillations in the hippocampus.
J Neurosci. 2014 Jan 8;34(2):662-74. doi: 10.1523/JNEUROSCI.0552-13.2014.
6
Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep.
J Neurosci. 2008 Jun 25;28(26):6731-41. doi: 10.1523/JNEUROSCI.1227-08.2008.
10
Sleep loss diminishes hippocampal reactivation and replay.
Nature. 2024 Jun;630(8018):935-942. doi: 10.1038/s41586-024-07538-2. Epub 2024 Jun 12.

引用本文的文献

2
Clinical Ophthalmic Outcomes and Impact of Single Large-Scale Mitochondrial DNA Deletions.
J Clin Med. 2025 Apr 8;14(8):2537. doi: 10.3390/jcm14082537.
4
Slow-wave sleep drives sleep-dependent renormalization of synaptic AMPA receptor levels in the hypothalamus.
PLoS Biol. 2024 Aug 20;22(8):e3002768. doi: 10.1371/journal.pbio.3002768. eCollection 2024 Aug.
5
Sleep-dependent decorrelation of hippocampal spatial representations.
iScience. 2024 May 22;27(6):110076. doi: 10.1016/j.isci.2024.110076. eCollection 2024 Jun 21.
6
Sleep loss diminishes hippocampal reactivation and replay.
Nature. 2024 Jun;630(8018):935-942. doi: 10.1038/s41586-024-07538-2. Epub 2024 Jun 12.
7
Retuning of hippocampal representations during sleep.
Nature. 2024 May;629(8012):630-638. doi: 10.1038/s41586-024-07397-x. Epub 2024 May 8.
9
Neuronal dynamics direct cerebrospinal fluid perfusion and brain clearance.
Nature. 2024 Mar;627(8002):157-164. doi: 10.1038/s41586-024-07108-6. Epub 2024 Feb 28.
10
Linking activity dyshomeostasis and sleep disturbances in Alzheimer disease.
Nat Rev Neurosci. 2024 Apr;25(4):272-284. doi: 10.1038/s41583-024-00797-y. Epub 2024 Feb 19.

本文引用的文献

2
Millisecond timescale synchrony among hippocampal neurons.
J Neurosci. 2014 Nov 5;34(45):14984-94. doi: 10.1523/JNEUROSCI.1091-14.2014.
3
The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness.
Neurosci Biobehav Rev. 2014 Nov;47:122-53. doi: 10.1016/j.neubiorev.2014.08.001. Epub 2014 Aug 10.
4
Engineering a memory with LTD and LTP.
Nature. 2014 Jul 17;511(7509):348-52. doi: 10.1038/nature13294. Epub 2014 Jun 1.
5
Hippocampal output area CA1 broadcasts a generalized novelty signal during an object-place recognition task.
Hippocampus. 2014 Jul;24(7):773-83. doi: 10.1002/hipo.22268. Epub 2014 Mar 21.
7
Comparison of sleep spindles and theta oscillations in the hippocampus.
J Neurosci. 2014 Jan 8;34(2):662-74. doi: 10.1523/JNEUROSCI.0552-13.2014.
8
Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes?
Trends Neurosci. 2014 Jan;37(1):10-9. doi: 10.1016/j.tins.2013.10.002. Epub 2013 Nov 7.
9
Sleep-dependent synaptic down-selection (I): modeling the benefits of sleep on memory consolidation and integration.
Front Neurol. 2013 Sep 30;4:143. doi: 10.3389/fneur.2013.00143. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验