Schmidt Markus H
Ohio Sleep Medicine Institute, 4975 Bradenton Ave., Dublin, OH 43017, United States.
Neurosci Biobehav Rev. 2014 Nov;47:122-53. doi: 10.1016/j.neubiorev.2014.08.001. Epub 2014 Aug 10.
The energy allocation (EA) model defines behavioral strategies that optimize the temporal utilization of energy to maximize reproductive success. This model proposes that all species of the animal kingdom share a universal sleep function that shunts waking energy utilization toward sleep-dependent biological investment. For endotherms, REM sleep evolved to enhance energy appropriation for somatic and CNS-related processes by eliminating thermoregulatory defenses and skeletal muscle tone. Alternating REM with NREM sleep conserves energy by decreasing the need for core body temperature defense. Three EA phenotypes are proposed: sleep-wake cycling, torpor, and continuous (or predominant) wakefulness. Each phenotype carries inherent costs and benefits. Sleep-wake cycling downregulates specific biological processes in waking and upregulates them in sleep, thereby decreasing energy demands imposed by wakefulness, reducing cellular infrastructure requirements, and resulting in overall energy conservation. Torpor achieves the greatest energy savings, but critical biological operations are compromised. Continuous wakefulness maximizes niche exploitation, but endures the greatest energy demands. The EA model advances a new construct for understanding sleep-wake organization in ontogenetic and phylogenetic domains.
能量分配(EA)模型定义了一些行为策略,这些策略能优化能量的时间利用,以实现繁殖成功率最大化。该模型提出,动物界的所有物种都具有一种通用的睡眠功能,即将清醒时的能量利用转向依赖睡眠的生物投资。对于恒温动物来说,快速眼动睡眠(REM睡眠)的进化是为了通过消除体温调节防御和骨骼肌张力,增强对躯体及中枢神经系统相关过程的能量获取。快速眼动睡眠与非快速眼动睡眠交替,通过减少对核心体温防御的需求来保存能量。该模型提出了三种能量分配表型:睡眠-觉醒循环、蛰伏和持续(或主要)觉醒。每种表型都有其固有的成本和收益。睡眠-觉醒循环在清醒时下调特定的生物过程,在睡眠时上调这些过程,从而降低清醒时的能量需求,减少细胞基础设施需求,并实现整体能量保存。蛰伏能实现最大程度的能量节省,但关键的生物活动会受到影响。持续觉醒能使生态位利用最大化,但承受着最大的能量需求。能量分配模型提出了一个新的概念框架,用于理解个体发育和系统发育领域中的睡眠-觉醒组织。