Suppr超能文献

一种估算体重指数分布的新方法。

A novel method for estimating distributions of body mass index.

作者信息

Ng Marie, Liu Patrick, Thomson Blake, Murray Christopher J L

机构信息

Institute for Health Metrics and Evaluation, Seattle, USA ; IBM Watson Health, San Jose, USA.

Institute for Health Metrics and Evaluation, Seattle, USA.

出版信息

Popul Health Metr. 2016 Mar 12;14:6. doi: 10.1186/s12963-016-0076-2. eCollection 2016.

Abstract

BACKGROUND

Understanding trends in the distribution of body mass index (BMI) is a critical aspect of monitoring the global overweight and obesity epidemic. Conventional population health metrics often only focus on estimating and reporting the mean BMI and the prevalence of overweight and obesity, which do not fully characterize the distribution of BMI. In this study, we propose a novel method which allows for the estimation of the entire distribution.

METHODS

The proposed method utilizes the optimization algorithm, L-BFGS-B, to derive the distribution of BMI from three commonly available population health statistics: mean BMI, prevalence of overweight, and prevalence of obesity. We conducted a series of simulations to examine the properties, accuracy, and robustness of the method. We then illustrated the practical application of the method by applying it to the 2011-2012 US National Health and Nutrition Examination Survey (NHANES).

RESULTS

Our method performed satisfactorily across various simulation scenarios yielding empirical (estimated) distributions which aligned closely with the true distributions. Application of the method to the NHANES data also showed a high level of consistency between the empirical and true distributions. In situations where there were considerable outliers, the method was less satisfactory at capturing the extreme values. Nevertheless, it remained accurate at estimating the central tendency and quintiles.

CONCLUSION

The proposed method offers a tool that can efficiently estimate the entire distribution of BMI. The ability to track the distributions of BMI will improve our capacity to capture changes in the severity of overweight and obesity and enable us to better monitor the epidemic.

摘要

背景

了解体重指数(BMI)分布趋势是监测全球超重和肥胖流行情况的关键环节。传统的人群健康指标通常仅侧重于估计和报告平均BMI以及超重和肥胖的患病率,这些并不能完全描述BMI的分布情况。在本研究中,我们提出了一种新方法,可用于估计整个分布。

方法

所提出的方法利用优化算法L - BFGS - B,从三个常用的人群健康统计数据:平均BMI、超重患病率和肥胖患病率中推导BMI的分布。我们进行了一系列模拟,以检验该方法的性质、准确性和稳健性。然后,通过将其应用于2011 - 2012年美国国家健康与营养检查调查(NHANES)来说明该方法的实际应用。

结果

我们的方法在各种模拟场景中表现令人满意,得出的经验(估计)分布与真实分布紧密吻合。将该方法应用于NHANES数据也显示出经验分布与真实分布之间具有高度一致性。在存在大量异常值的情况下,该方法在捕捉极端值方面不太令人满意。然而,在估计中心趋势和五分位数时仍保持准确。

结论

所提出的方法提供了一种能够有效估计BMI整个分布的工具。跟踪BMI分布的能力将提高我们捕捉超重和肥胖严重程度变化的能力,并使我们能够更好地监测这一流行情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386a/4789291/5df020685374/12963_2016_76_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验