Suppr超能文献

广义 lambda 分布,用于灵活检验因变量(如体重指数)分布中均值以外的差异。

Generalized lambda distribution for flexibly testing differences beyond the mean in the distribution of a dependent variable such as body mass index.

机构信息

Office of Energetics, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA.

Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.

出版信息

Int J Obes (Lond). 2018 Apr;42(4):930-933. doi: 10.1038/ijo.2017.262. Epub 2017 Oct 30.

Abstract

BACKGROUND/OBJECTIVES: Conventional statistical methods often test for group differences in a single parameter of a distribution, usually the conditional mean (for example, differences in mean body mass index (BMI; kg m) by education category) under specific distributional assumptions. However, parameters other than the mean may of be interest, and the distributional assumptions of conventional statistical methods may be violated in some situations.

SUBJECTS/METHODS: We describe an application of the generalized lambda distribution (GLD), a flexible distribution that can be used to model continuous outcomes, and simultaneously describe a likelihood ratio test for differences in multiple distribution parameters, including measures of central tendency, dispersion, asymmetry and steepness. We demonstrate the value of our approach by testing for differences in multiple parameters of the BMI distribution by education category using the Health and Retirement Study data set.

RESULTS

Our proposed method indicated that at least one parameter of the BMI distribution differed by education category in both the complete data set (N=13 571) (P<0.001) and a randomly resampled data set (N=300 from each category) to assess the method under circumstances of lesser power (P=0.044). Similar method using normal distribution alternative to GLD indicated the significant difference among the complete data set (P<0.001) but not in the smaller randomly resampled data set (P=0.968). Moreover, the proposed method allowed us to specify which parameters of the BMI distribution significantly differed by education category for both the complete and the random subsample, respectively.

CONCLUSIONS

Our method provides a flexible statistical approach to compare the entire distribution of variables of interest, which can be a supplement to conventional approaches that frequently require unmet assumptions and focus only on a single parameter of distribution.

摘要

背景/目的:传统的统计方法通常在特定的分布假设下,检验分布的单个参数(例如,受教育程度类别下的平均体重指数(BMI;kg/m)的差异)的组间差异。然而,除了均值之外,其他参数也可能是感兴趣的,而且在某些情况下,传统统计方法的分布假设可能会被违反。

受试者/方法:我们描述了广义 lambda 分布(GLD)的应用,GLD 是一种灵活的分布,可以用于对连续结果进行建模,并同时描述用于比较多个分布参数差异的似然比检验,包括集中趋势、分散度、不对称性和陡峭度的度量。我们使用健康退休研究数据集检验了教育程度类别对 BMI 分布的多个参数的差异,证明了我们方法的价值。

结果

我们的方法表明,至少有一个 BMI 分布的参数在完整数据集(N=13571)(P<0.001)和随机重采样数据集(N=300 个类别中的每个类别)中存在差异,以评估在较小的功效情况下的方法(P=0.044)。使用 GLD 替代正态分布的类似方法表明,完整数据集中存在显著差异(P<0.001),但在较小的随机重采样数据集中不存在差异(P=0.968)。此外,该方法允许我们分别指定在完整和随机子样本中,BMI 分布的哪些参数显著存在差异。

结论

我们的方法提供了一种灵活的统计方法来比较感兴趣的变量的整个分布,可以作为对传统方法的补充,传统方法通常需要满足未满足的假设,并且仅关注分布的单个参数。

相似文献

3
Small class sizes for improving student achievement in primary and secondary schools: a systematic review.
Campbell Syst Rev. 2018 Oct 11;14(1):1-107. doi: 10.4073/csr.2018.10. eCollection 2018.
4
Factors associated with overweight: are the conclusions influenced by choice of the regression method?
BMC Public Health. 2016 Jul 26;16:642. doi: 10.1186/s12889-016-3340-2.
7
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
9
Alternatives in modeling of body mass index as a continuous response variable and relevance of residual analysis.
Cad Saude Publica. 2008 Feb;24(2):473-8. doi: 10.1590/s0102-311x2008000200027.
10

引用本文的文献

本文引用的文献

1
A novel method for estimating distributions of body mass index.
Popul Health Metr. 2016 Mar 12;14:6. doi: 10.1186/s12963-016-0076-2. eCollection 2016.
2
Trends in the skewness of the body mass index distribution among urban Australian adults, 1980 to 2007.
Ann Epidemiol. 2015 Jan;25(1):26-33. doi: 10.1016/j.annepidem.2014.10.008. Epub 2014 Oct 16.
3
Quantile regression-opportunities and challenges from a user's perspective.
Am J Epidemiol. 2014 Aug 1;180(3):330-1. doi: 10.1093/aje/kwu178. Epub 2014 Jul 2.
4
Overweight and poor? On the relationship between income and the body mass index.
Econ Hum Biol. 2011 Dec;9(4):342-55. doi: 10.1016/j.ehb.2011.07.004. Epub 2011 Jul 21.
5
The trend of BMI values of US adults by deciles, birth cohorts 1882-1986 stratified by gender and ethnicity.
Econ Hum Biol. 2011 Jul;9(3):234-50. doi: 10.1016/j.ehb.2011.03.005. Epub 2011 Apr 8.
6
The association of education with body mass index and waist circumference in the EPIC-PANACEA study.
BMC Public Health. 2011 Mar 17;11:169. doi: 10.1186/1471-2458-11-169.
7
Multiple imputation under the generalized lambda distribution.
J Biopharm Stat. 2009;19(1):77-89. doi: 10.1080/10543400802527882.
8
Breastfeeding and childhood obesity: shift of the entire BMI distribution or only the upper parts?
Obesity (Silver Spring). 2008 Dec;16(12):2730-3. doi: 10.1038/oby.2008.432. Epub 2008 Oct 9.
9
Cross-sectional and longitudinal associations of BMI with socioeconomic characteristics.
Obes Res. 2005 Aug;13(8):1412-21. doi: 10.1038/oby.2005.171.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验