Office of Energetics, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA.
Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
Int J Obes (Lond). 2018 Apr;42(4):930-933. doi: 10.1038/ijo.2017.262. Epub 2017 Oct 30.
BACKGROUND/OBJECTIVES: Conventional statistical methods often test for group differences in a single parameter of a distribution, usually the conditional mean (for example, differences in mean body mass index (BMI; kg m) by education category) under specific distributional assumptions. However, parameters other than the mean may of be interest, and the distributional assumptions of conventional statistical methods may be violated in some situations.
SUBJECTS/METHODS: We describe an application of the generalized lambda distribution (GLD), a flexible distribution that can be used to model continuous outcomes, and simultaneously describe a likelihood ratio test for differences in multiple distribution parameters, including measures of central tendency, dispersion, asymmetry and steepness. We demonstrate the value of our approach by testing for differences in multiple parameters of the BMI distribution by education category using the Health and Retirement Study data set.
Our proposed method indicated that at least one parameter of the BMI distribution differed by education category in both the complete data set (N=13 571) (P<0.001) and a randomly resampled data set (N=300 from each category) to assess the method under circumstances of lesser power (P=0.044). Similar method using normal distribution alternative to GLD indicated the significant difference among the complete data set (P<0.001) but not in the smaller randomly resampled data set (P=0.968). Moreover, the proposed method allowed us to specify which parameters of the BMI distribution significantly differed by education category for both the complete and the random subsample, respectively.
Our method provides a flexible statistical approach to compare the entire distribution of variables of interest, which can be a supplement to conventional approaches that frequently require unmet assumptions and focus only on a single parameter of distribution.
背景/目的:传统的统计方法通常在特定的分布假设下,检验分布的单个参数(例如,受教育程度类别下的平均体重指数(BMI;kg/m)的差异)的组间差异。然而,除了均值之外,其他参数也可能是感兴趣的,而且在某些情况下,传统统计方法的分布假设可能会被违反。
受试者/方法:我们描述了广义 lambda 分布(GLD)的应用,GLD 是一种灵活的分布,可以用于对连续结果进行建模,并同时描述用于比较多个分布参数差异的似然比检验,包括集中趋势、分散度、不对称性和陡峭度的度量。我们使用健康退休研究数据集检验了教育程度类别对 BMI 分布的多个参数的差异,证明了我们方法的价值。
我们的方法表明,至少有一个 BMI 分布的参数在完整数据集(N=13571)(P<0.001)和随机重采样数据集(N=300 个类别中的每个类别)中存在差异,以评估在较小的功效情况下的方法(P=0.044)。使用 GLD 替代正态分布的类似方法表明,完整数据集中存在显著差异(P<0.001),但在较小的随机重采样数据集中不存在差异(P=0.968)。此外,该方法允许我们分别指定在完整和随机子样本中,BMI 分布的哪些参数显著存在差异。
我们的方法提供了一种灵活的统计方法来比较感兴趣的变量的整个分布,可以作为对传统方法的补充,传统方法通常需要满足未满足的假设,并且仅关注分布的单个参数。