Griffin John M, Forse Alexander C, Grey Clare P
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK.
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
Solid State Nucl Magn Reson. 2016 Apr-May;74-75:16-35. doi: 10.1016/j.ssnmr.2016.03.003. Epub 2016 Mar 4.
Electrochemical double-layer capacitors, or 'supercapacitors' are attracting increasing attention as high-power energy storage devices for a wide range of technological applications. These devices store charge through electrostatic interactions between liquid electrolyte ions and the surfaces of porous carbon electrodes. However, many aspects of the fundamental mechanism of supercapacitance are still not well understood, and there is a lack of experimental techniques which are capable of studying working devices. Recently, solid-state NMR has emerged as a powerful tool for studying the local environments and behaviour of electrolyte ions in supercapacitor electrodes. In this Trends article, we review these recent developments and applications. We first discuss the basic principles underlying the mechanism of supercapacitance, as well as the key NMR observables that are relevant to the study of supercapacitor electrodes. We then review some practical aspects of the study of working devices using ex situ and in situ methodologies and explain the key advances that these techniques have allowed on the study of supercapacitor charging mechanisms. NMR experiments have revealed that the pores of the carbon electrodes contain a significant number of electrolyte ions in the absence of any charging potential. This has important implications for the molecular mechanisms of supercapacitance, as charge can be stored by different ion adsorption/desorption processes. Crucially, we show how in situ NMR experiments can be used to quantitatively study and characterise the charging mechanism, with the experiments providing the most detailed picture of charge storage to date, offering the opportunity to design enhanced devices. Finally, an outlook for future directions for solid-state NMR in supercapacitor research is offered.
电化学双层电容器,即“超级电容器”,作为一种适用于广泛技术应用的高功率储能设备,正吸引着越来越多的关注。这些设备通过液体电解质离子与多孔碳电极表面之间的静电相互作用来存储电荷。然而,超级电容基本机制的许多方面仍未得到很好的理解,并且缺乏能够研究工作设备的实验技术。最近,固态核磁共振已成为研究超级电容器电极中电解质离子的局部环境和行为的有力工具。在这篇《趋势》文章中,我们回顾了这些最新进展和应用。我们首先讨论超级电容机制背后的基本原理,以及与超级电容器电极研究相关的关键核磁共振观测指标。然后,我们回顾使用非原位和原位方法研究工作设备的一些实际方面,并解释这些技术在超级电容器充电机制研究方面所取得的关键进展。核磁共振实验表明,在没有任何充电电位的情况下,碳电极的孔隙中含有大量电解质离子。这对超级电容的分子机制具有重要意义,因为电荷可以通过不同的离子吸附/解吸过程存储。至关重要的是,我们展示了原位核磁共振实验如何用于定量研究和表征充电机制,这些实验提供了迄今为止最详细的电荷存储情况,为设计增强型设备提供了机会。最后,我们展望了固态核磁共振在超级电容器研究中的未来发展方向。