Balhatchet Chloe J, Gittins Jamie W, Shin Seung-Jae, Ge Kangkang, Liu Xinyu, Trisukhon Teedhat, Sharma Shivani, Kress Thomas, Taberna Pierre-Louis, Simon Patrice, Walsh Aron, Forse Alexander C
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Thomas Young Centre and Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.
J Am Chem Soc. 2024 Aug 21;146(33):23171-23181. doi: 10.1021/jacs.4c05330. Epub 2024 Aug 12.
Conductive layered metal-organic frameworks (MOFs) have demonstrated promising electrochemical performances as supercapacitor electrode materials. The well-defined chemical structures of these crystalline porous electrodes facilitate structure-performance studies; however, there is a fundamental lack in the molecular-level understanding of charge storage mechanisms in conductive layered MOFs. To address this, we employ solid-state nuclear magnetic resonance (NMR) spectroscopy to study ion adsorption in nickel 2,3,6,7,10,11-hexaiminotriphenylene, Ni(HITP). In this system, we find that separate resonances can be observed for the MOF's in-pore and ex-pore ions. The chemical shift of in-pore electrolyte is found to be dominated by specific chemical interactions with the MOF functional groups, with this result supported by quantum mechanics/molecular mechanics (QM/MM) and density functional theory (DFT) calculations. Quantification of the electrolyte environments by NMR was also found to provide a proxy for electrochemical performance, which could facilitate the rapid screening of synthesized MOF samples. Finally, the charge storage mechanism was explored using a combination of NMR and electrochemical quartz crystal microbalance (EQCM) experiments. These measurements revealed that cations are the dominant contributors to charge storage in Ni(HITP), with anions contributing only a minor contribution to the charge storage. Overall, this work establishes the methods for studying MOF-electrolyte interactions via NMR spectroscopy. Understanding how these interactions influence the charging storage mechanism will aid the design of MOF-electrolyte combinations to optimize the performance of supercapacitors, as well as other electrochemical devices including electrocatalysts and sensors.
导电层状金属有机框架材料(MOFs)作为超级电容器电极材料已展现出令人瞩目的电化学性能。这些晶体多孔电极明确的化学结构有助于进行结构-性能研究;然而,在分子层面上对导电层状MOFs中电荷存储机制的理解仍存在根本不足。为解决这一问题,我们采用固态核磁共振(NMR)光谱法研究镍2,3,6,7,10,11-六亚氨基三亚苯(Ni(HITP))中的离子吸附。在该体系中,我们发现可以观察到MOF孔内和孔外离子的不同共振信号。发现孔内电解质的化学位移主要由与MOF官能团的特定化学相互作用决定,量子力学/分子力学(QM/MM)和密度泛函理论(DFT)计算结果支持了这一结论。还发现通过NMR对电解质环境进行定量可为电化学性能提供一个指标,这有助于快速筛选合成的MOF样品。最后,结合NMR和电化学石英晶体微天平(EQCM)实验探索了电荷存储机制。这些测量结果表明,阳离子是Ni(HITP)中电荷存储的主要贡献者,而阴离子对电荷存储的贡献较小。总体而言,这项工作建立了通过NMR光谱研究MOF-电解质相互作用的方法。了解这些相互作用如何影响电荷存储机制将有助于设计MOF-电解质组合,以优化超级电容器以及包括电催化剂和传感器在内的其他电化学器件的性能。