Suppr超能文献

超级电容器的原位核磁共振光谱:深入了解电荷存储机制。

In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism.

作者信息

Wang Hao, Forse Alexander C, Griffin John M, Trease Nicole M, Trognko Lorie, Taberna Pierre-Louis, Simon Patrice, Grey Clare P

机构信息

Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K.

出版信息

J Am Chem Soc. 2013 Dec 18;135(50):18968-80. doi: 10.1021/ja410287s. Epub 2013 Dec 4.

Abstract

Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance (NMR) methodologies to study changes at the electrode-electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations.

摘要

电化学电容器,通常被称为超级电容器,是具有高功率性能和长循环寿命的重要储能装置。在此,我们报告了原位核磁共振(NMR)方法的开发与应用,以研究工作装置在充电和放电时电极 - 电解质界面的变化。对于一个由活性炭电极和有机电解质组成的超级电容器,在不同充电状态下进行的核磁共振实验能够对电荷存储物种的数量进行定量,并表明存在至少两种不同的电荷存储机制。在电池电压低于0.75 V时,电解质阴离子在负极从碳微孔中越来越多地解吸,而在正极,随着电压升高,吸附的阴离子数量几乎没有变化。然而,在电池电压高于0.75 V时,观察到正极中吸附阴离子的量急剧增加,而阴离子在负极继续解吸。同时进行循环伏安法的核磁共振实验表明,超级电容器充电会导致电荷存储物种的局部环境发生显著变化,观察到其化学位移有周期性变化。对模型碳片段的核磁共振计算表明,从离域系统中添加和去除电子应导致附近物种的核独立化学位移显著增加,这与我们的实验观察结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b25a/3876747/5325cc2f2fd0/ja-2013-10287s_0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验