Wang Zhenghan, Tacchelly-Benites Ofelia, Yang Eungi, Thorne Curtis A, Nojima Hisashi, Lee Ethan, Ahmed Yashi
Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire 03755.
Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232.
Genetics. 2016 May;203(1):269-81. doi: 10.1534/genetics.115.183244. Epub 2016 Mar 14.
Wnt/β-catenin signal transduction directs metazoan development and is deregulated in numerous human congenital disorders and cancers. In the absence of Wnt stimulation, a multiprotein "destruction complex," assembled by the scaffold protein Axin, targets the key transcriptional activator β-catenin for proteolysis. Axin is maintained at very low levels that limit destruction complex activity, a property that is currently being exploited in the development of novel therapeutics for Wnt-driven cancers. Here, we use an in vivo approach in Drosophila to determine how tightly basal Axin levels must be controlled for Wnt/Wingless pathway activation, and how Axin stability is regulated. We find that for nearly all Wingless-driven developmental processes, a three- to fourfold increase in Axin is insufficient to inhibit signaling, setting a lower-limit for the threshold level of Axin in the majority of in vivo contexts. Further, we find that both the tumor suppressor adenomatous polyposis coli (APC) and the ADP-ribose polymerase Tankyrase (Tnks) have evolutionarily conserved roles in maintaining basal Axin levels below this in vivo threshold, and we define separable domains in Axin that are important for APC- or Tnks-dependent destabilization. Together, these findings reveal that both APC and Tnks maintain basal Axin levels below a critical in vivo threshold to promote robust pathway activation following Wnt stimulation.
Wnt/β-连环蛋白信号转导指导后生动物的发育,并且在许多人类先天性疾病和癌症中失调。在没有Wnt刺激的情况下,由支架蛋白Axin组装的多蛋白“破坏复合物”将关键转录激活因子β-连环蛋白靶向进行蛋白水解。Axin维持在非常低的水平,这限制了破坏复合物的活性,这一特性目前正被用于开发针对Wnt驱动癌症的新型疗法。在这里,我们在果蝇中使用体内方法来确定为了激活Wnt/无翅通路,基础Axin水平必须被控制在何种严格程度,以及Axin的稳定性是如何被调节的。我们发现,对于几乎所有由无翅驱动的发育过程,Axin增加三到四倍不足以抑制信号传导,这为大多数体内情况下Axin的阈值水平设定了下限。此外,我们发现肿瘤抑制因子腺瘤性息肉病大肠杆菌(APC)和ADP-核糖聚合酶端锚聚合酶(Tnks)在将基础Axin水平维持在体内阈值以下方面具有进化上保守的作用,并且我们在Axin中定义了对于APC或Tnks依赖性去稳定化很重要的可分离结构域。总之,这些发现揭示了APC和Tnks都将基础Axin水平维持在体内关键阈值以下,以促进Wnt刺激后强大的信号通路激活。