Re Rebecca, Contini Davide, Zucchelli Lucia, Torricelli Alessandro, Spinelli Lorenzo
Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
IFN-CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
Biomed Opt Express. 2016 Jan 5;7(2):264-78. doi: 10.1364/BOE.7.000264. eCollection 2016 Feb 1.
In order to study hemodynamic changes involved in muscular metabolism by means of time domain fNIRS, we need to discriminate in the measured signal contributions coming from different depths. Muscles are, in fact, typically located under other tissues, e.g. skin and fat. In this paper, we study the possibility to exploit a previously proposed method for analyzing time-resolved fNIRS measurements in a two-layer structure with a thin superficial layer. This method is based on the calculation of the time-dependent mean partial pathlengths. We validated it by simulating venous and arterial arm cuff occlusions and then applied it on in vivo measurements.
为了通过时域功能近红外光谱技术研究肌肉代谢中涉及的血流动力学变化,我们需要区分测量信号中来自不同深度的贡献。事实上,肌肉通常位于其他组织之下,例如皮肤和脂肪。在本文中,我们研究了利用先前提出的一种方法来分析具有薄表层的两层结构中的时间分辨功能近红外光谱测量值的可能性。该方法基于对随时间变化的平均部分光程长度的计算。我们通过模拟静脉和动脉臂带阻断对其进行了验证,然后将其应用于体内测量。