Suppr超能文献

随机光学涨落成像(SOFI)中无模型不确定性估计可使时间分辨率提高一倍。

Model-free uncertainty estimation in stochastical optical fluctuation imaging (SOFI) leads to a doubled temporal resolution.

作者信息

Vandenberg Wim, Duwé Sam, Leutenegger Marcel, Moeyaert Benjamien, Krajnik Bartosz, Lasser Theo, Dedecker Peter

机构信息

Department of Chemistry, KULeuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium.

Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; École Polytechnique Fédérale de Lausanne, Laboratoire d'Optique Biomédicale, 1015 Lausanne, Switzerland.

出版信息

Biomed Opt Express. 2016 Jan 15;7(2):467-80. doi: 10.1364/BOE.7.000467. eCollection 2016 Feb 1.

Abstract

Stochastic optical fluctuation imaging (SOFI) is a super-resolution fluorescence imaging technique that makes use of stochastic fluctuations in the emission of the fluorophores. During a SOFI measurement multiple fluorescence images are acquired from the sample, followed by the calculation of the spatiotemporal cumulants of the intensities observed at each position. Compared to other techniques, SOFI works well under conditions of low signal-to-noise, high background, or high emitter densities. However, it can be difficult to unambiguously determine the reliability of images produced by any superresolution imaging technique. In this work we present a strategy that enables the estimation of the variance or uncertainty associated with each pixel in the SOFI image. In addition to estimating the image quality or reliability, we show that this can be used to optimize the signal-to-noise ratio (SNR) of SOFI images by including multiple pixel combinations in the cumulant calculation. We present an algorithm to perform this optimization, which automatically takes all relevant instrumental, sample, and probe parameters into account. Depending on the optical magnification of the system, this strategy can be used to improve the SNR of a SOFI image by 40% to 90%. This gain in information is entirely free, in the sense that it does not require additional efforts or complications. Alternatively our approach can be applied to reduce the number of fluorescence images to meet a particular quality level by about 30% to 50%, strongly improving the temporal resolution of SOFI imaging.

摘要

随机光学涨落成像(SOFI)是一种超分辨率荧光成像技术,它利用荧光团发射中的随机涨落。在SOFI测量过程中,从样品采集多个荧光图像,然后计算在每个位置观察到的强度的时空累积量。与其他技术相比,SOFI在低信噪比、高背景或高发光体密度条件下表现良好。然而,明确确定任何超分辨率成像技术所产生图像的可靠性可能会很困难。在这项工作中,我们提出了一种策略,能够估计与SOFI图像中每个像素相关的方差或不确定性。除了估计图像质量或可靠性外,我们还表明,通过在累积量计算中纳入多个像素组合,这可用于优化SOFI图像的信噪比(SNR)。我们提出了一种执行此优化的算法,该算法会自动考虑所有相关的仪器、样品和探针参数。根据系统的光学放大倍数,此策略可用于将SOFI图像的SNR提高40%至90%。从不需要额外努力或复杂化的意义上来说,这种信息增益是完全免费的。或者,我们的方法可用于将荧光图像的数量减少约30%至50%,以达到特定的质量水平,从而大幅提高SOFI成像的时间分辨率。

相似文献

5
Fourier interpolation stochastic optical fluctuation imaging.傅里叶插值随机光学涨落成像
Opt Express. 2015 Jun 15;23(12):16154-63. doi: 10.1364/OE.23.016154.
9

引用本文的文献

3
4
Smoothness correction for better SOFI imaging.用于更好的 SOFI 成像的平滑度校正。
Sci Rep. 2021 Apr 7;11(1):7569. doi: 10.1038/s41598-021-87164-4.

本文引用的文献

3
Fourier interpolation stochastic optical fluctuation imaging.傅里叶插值随机光学涨落成像
Opt Express. 2015 Jun 15;23(12):16154-63. doi: 10.1364/OE.23.016154.
4
Diffraction-unlimited imaging: from pretty pictures to hard numbers.无衍射成像:从精美图像到确切数据。
Cell Tissue Res. 2015 Apr;360(1):151-78. doi: 10.1007/s00441-014-2109-0. Epub 2015 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验