Molecular and Clinical Sciences Research Institute, St Georges University of London, London, UK.
Neurology, St George's University Hospitals NHS Foundation Trust, London, UK.
Neuropathol Appl Neurobiol. 2018 Jun;44(4):417-426. doi: 10.1111/nan.12426. Epub 2017 Aug 3.
The spatial resolution of light microscopy is limited by the wavelength of visible light (the 'diffraction limit', approximately 250 nm). Resolution of sub-cellular structures, smaller than this limit, is possible with super resolution methods such as stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). We aimed to resolve subcellular structures (axons, myelin sheaths and astrocytic processes) within intact white matter, using STORM and SOFI.
Standard cryostat-cut sections of subcortical white matter from donated human brain tissue and from adult rat and mouse brain were labelled, using standard immunohistochemical markers (neurofilament-H, myelin-associated glycoprotein, glial fibrillary acidic protein, GFAP). Image sequences were processed for STORM (effective pixel size 8-32 nm) and for SOFI (effective pixel size 80 nm).
In human, rat and mouse, subcortical white matter high-quality images for axonal neurofilaments, myelin sheaths and filamentous astrocytic processes were obtained. In quantitative measurements, STORM consistently underestimated width of axons and astrocyte processes (compared with electron microscopy measurements). SOFI provided more accurate width measurements, though with somewhat lower spatial resolution than STORM.
Super resolution imaging of intact cryo-cut human brain tissue is feasible. For quantitation, STORM can under-estimate diameters of thin fluorescent objects. SOFI is more robust. The greatest limitation for super-resolution imaging in brain sections is imposed by sample preparation. We anticipate that improved strategies to reduce autofluorescence and to enhance fluorophore performance will enable rapid expansion of this approach.
光学显微镜的空间分辨率受可见光波长的限制(即“衍射极限”,约为 250nm)。对于小于该极限的亚细胞结构,超分辨率方法(如随机光学重建显微镜(STORM)和超分辨率光波动成像(SOFI))可以实现分辨率。我们旨在使用 STORM 和 SOFI 解析完整的白质内的亚细胞结构(轴突、髓鞘和星形胶质细胞突起)。
使用标准免疫组织化学标志物(神经丝-H、髓鞘相关糖蛋白、胶质纤维酸性蛋白、GFAP)对捐赠的人脑组织和成年大鼠和小鼠脑的标准冷冻切片进行标记。对 STORM(有效像素尺寸 8-32nm)和 SOFI(有效像素尺寸 80nm)进行图像序列处理。
在人类、大鼠和小鼠中,获得了高质量的亚皮质白质轴突神经丝、髓鞘和丝状星形胶质细胞突起图像。在定量测量中,与电子显微镜测量相比,STORM 始终低估了轴突和星形胶质细胞突起的宽度。SOFI 提供了更准确的宽度测量值,尽管其空间分辨率略低于 STORM。
对完整的冷冻切片人脑组织进行超分辨率成像是可行的。对于定量分析,STORM 可能会低估细荧光物体的直径。SOFI 更可靠。超分辨率成像在脑切片中的最大限制是由样品制备引起的。我们预计,改进的减少自发荧光和增强荧光团性能的策略将使这种方法得以快速扩展。