Suppr超能文献

验证研究:胶质瘤祖细胞体外反应预测性基因表达谱分析

Validation Study: Response-Predictive Gene Expression Profiling of Glioma Progenitor Cells In Vitro.

作者信息

Moeckel Sylvia, Vollmann-Zwerenz Arabel, Proescholdt Martin, Brawanski Alexander, Riemenschneider Markus J, Bogdahn Ulrich, Bosserhoff Anja-Katrin, Spang Rainer, Hau Peter

机构信息

Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany.

Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany.

出版信息

PLoS One. 2016 Mar 15;11(3):e0151312. doi: 10.1371/journal.pone.0151312. eCollection 2016.

Abstract

BACKGROUND

In a previous publication we introduced a novel approach to identify genes that hold predictive information about treatment outcome. A linear regression model was fitted by using the least angle regression algorithm (LARS) with the expression profiles of a construction set of 18 glioma progenitor cells enhanced for brain tumor initiating cells (BTIC) before and after in vitro treatment with the tyrosine kinase inhibitor Sunitinib. Profiles from treated progenitor cells allowed predicting therapy-induced impairment of proliferation in vitro. Prediction performance was validated in leave one out cross validation.

METHODS

In this study, we used an additional validation set of 18 serum-free short-term treated in vitro cell cultures to test the predictive properties of the signature in an independent cohort. We assessed proliferation rates together with transcriptome-wide expression profiles after Sunitinib treatment of each individual cell culture, following the methods of the previous publication.

RESULTS

We confirmed treatment-induced expression changes in our validation set, but our signature failed to predict proliferation inhibition. Neither re-calculation of the combined dataset with all 36 BTIC cultures nor separation of samples into TCGA subclasses did generate a proliferation prediction.

CONCLUSION

Although the gene signature published from our construction set exhibited good prediction accuracy in cross validation, we were not able to validate the signature in an independent validation data set. Reasons could be regression to the mean, the moderate numbers of samples, or too low differences in the response to proliferation inhibition in the validation set. At this stage and based on the presented results, we conclude that the signature does not warrant further developmental steps towards clinical application.

摘要

背景

在之前的一篇出版物中,我们介绍了一种新方法来识别携带有关治疗结果预测信息的基因。通过使用最小角回归算法(LARS),以18个经脑肿瘤起始细胞(BTIC)增强的胶质瘤祖细胞构建集在体外接受酪氨酸激酶抑制剂舒尼替尼治疗前后的表达谱拟合线性回归模型。来自处理后祖细胞的谱能够预测体外治疗诱导的增殖损伤。预测性能在留一法交叉验证中得到验证。

方法

在本研究中,我们使用了另外18个无血清短期体外处理细胞培养物的验证集,以在独立队列中测试该特征的预测特性。按照之前出版物的方法,我们在舒尼替尼处理每个单独细胞培养物后评估增殖率以及全转录组范围的表达谱。

结果

我们在验证集中证实了治疗诱导的表达变化,但我们的特征未能预测增殖抑制。将所有36个BTIC培养物的合并数据集重新计算,或将样本分离为TCGA亚类,均未产生增殖预测。

结论

尽管我们构建集公布的基因特征在交叉验证中表现出良好的预测准确性,但我们无法在独立验证数据集中验证该特征。原因可能是均值回归、样本数量适中,或验证集中增殖抑制反应的差异太小。基于目前呈现的结果,我们得出结论,该特征不值得朝着临床应用进行进一步的开发步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dae/4792439/84d4ab17f718/pone.0151312.g001.jpg

相似文献

3
Selective calcium sensitivity in immature glioma cancer stem cells.未成熟胶质瘤癌干细胞中的选择性钙敏感性
PLoS One. 2014 Dec 22;9(12):e115698. doi: 10.1371/journal.pone.0115698. eCollection 2014.
9
Mixture classification model based on clinical markers for breast cancer prognosis.基于临床标志物的乳腺癌预后混合分类模型。
Artif Intell Med. 2010 Feb-Mar;48(2-3):129-37. doi: 10.1016/j.artmed.2009.07.008. Epub 2009 Dec 14.

本文引用的文献

4
Continuous daily sunitinib for recurrent glioblastoma.舒尼替尼持续每日治疗复发性胶质母细胞瘤。
J Neurooncol. 2013 Jan;111(1):41-8. doi: 10.1007/s11060-012-0988-z. Epub 2012 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验