Suppr超能文献

基于 (19)F NMR 谱的片段连接方法,获得高活性和高选择性的β-分泌酶抑制剂。

Fragment-Linking Approach Using (19)F NMR Spectroscopy To Obtain Highly Potent and Selective Inhibitors of β-Secretase.

机构信息

Therapeutic Discovery, Amgen, Inc. One Amgen Center Drive, Thousand Oaks, California 91320, United States.

出版信息

J Med Chem. 2016 Apr 28;59(8):3732-49. doi: 10.1021/acs.jmedchem.5b01917. Epub 2016 Apr 6.

Abstract

Fragment-based drug discovery (FBDD) has become a widely used tool in small-molecule drug discovery efforts. One of the most commonly used biophysical methods in detecting weak binding of fragments is nuclear magnetic resonance (NMR) spectroscopy. In particular, FBDD performed with (19)F NMR-based methods has been shown to provide several advantages over (1)H NMR using traditional magnetization-transfer and/or two-dimensional methods. Here, we demonstrate the utility and power of (19)F-based fragment screening by detailing the identification of a second-site fragment through (19)F NMR screening that binds to a specific pocket of the aspartic acid protease, β-secretase (BACE-1). The identification of this second-site fragment allowed the undertaking of a fragment-linking approach, which ultimately yielded a molecule exhibiting a more than 360-fold increase in potency while maintaining reasonable ligand efficiency and gaining much improved selectivity over cathepsin-D (CatD). X-ray crystallographic studies of the molecules demonstrated that the linked fragments exhibited binding modes consistent with those predicted from the targeted screening approach, through-space NMR data, and molecular modeling.

摘要

基于片段的药物发现(FBDD)已成为小分子药物发现工作中广泛使用的工具。在检测片段弱结合方面,最常用的生物物理方法之一是核磁共振(NMR)光谱。特别是,已经证明使用基于(19)F NMR 的方法进行 FBDD 比使用传统的磁化转移和/或二维方法的(1)H NMR 具有几个优势。在这里,我们通过详细描述通过(19)F NMR 筛选鉴定与天冬氨酸蛋白酶β-分泌酶(BACE-1)特定口袋结合的第二个结合点片段,展示了基于(19)F 的片段筛选的实用性和优势。鉴定出的第二个结合点片段使我们能够进行片段连接方法,最终得到的分子在保持合理配体效率的同时,对天冬氨酸蛋白酶-D(CatD)的选择性提高了 360 多倍。分子的 X 射线晶体学研究表明,连接的片段表现出与靶向筛选方法、空间 NMR 数据和分子建模预测的结合模式一致的结合模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验