Suppr超能文献

乙酰胆碱酯酶:构建多种治疗靶点强效调节剂的通用模板。

Acetylcholinesterase: A Versatile Template to Coin Potent Modulators of Multiple Therapeutic Targets.

作者信息

Luque F Javier, Muñoz-Torrero Diego

机构信息

Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, E-08921 Santa Coloma de Gramenet, Spain.

Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain.

出版信息

Acc Chem Res. 2024 Feb 9;57(4):450-67. doi: 10.1021/acs.accounts.3c00617.

Abstract

ConspectusThe enzyme acetylcholinesterase (AChE) hydrolyzes the neurotransmitter acetylcholine (ACh) at cholinergic synapses of the peripheral and central nervous system. Thus, it is a prime therapeutic target for diseases that occur with a cholinergic deficit, prominently Alzheimer's disease (AD). Working at a rate near the diffusion limit, it is considered one of nature's most efficient enzymes. This is particularly meritorious considering that its catalytic site is buried at the bottom of a 20-Å-deep cavity, which is preceded by a bottleneck with a diameter shorter than that of the trimethylammonium group of ACh, which has to transit through it. Not only the particular architecture and amino acid composition of its active site gorge enable AChE to largely overcome this potential drawback, but it also offers plenty of possibilities for the design of novel inhibitor drug candidates.In this Account, we summarize our different approaches to colonize the vast territory of the AChE gorge in the pursuit of increased occupancy and hence of inhibitors with increased affinity. We pioneered the use of molecular hybridization to design inhibitors with extended binding at the CAS, reaching affinities among the highest reported so far. Further application of molecular hybridization to grow CAS extended binders by attaching a PAS-binding moiety through suitable linkers led to multisite inhibitors that span the whole length of the gorge, reaching the PAS and even interacting with midgorge residues. We show that multisite AChE inhibitors can also be successfully designed the other way around, by starting with an optimized PAS binder and then colonizing the gorge and CAS. Molecular hybridization from a multicomponent reaction-derived PAS binder afforded a single-digit picomolar multisite AChE inhibitor with more than 1.5 million-fold increased potency relative to the initial hit. This illustrates the powerful alliance between molecular hybridization and gorge occupancy for designing potent AChE inhibitors.Beyond AChE, we show that the stereoelectronic requirements imposed by the AChE gorge for multisite binding have a templating effect that leads to compounds that are active in other key biological targets in AD and other neurological and non-neurological diseases, such as BACE-1 and the aggregation of amyloidogenic proteins (β-amyloid, tau, α-synuclein, prion protein, transthyretin, and human islet amyloid polypeptide). The use of known pharmacophores for other targets as the PAS-binding motif enables the rational design of multitarget agents with multisite binding within AChE and activity against a variety of targets or pathological events, such as oxidative stress and the neuroinflammation-modulating enzyme soluble epoxide hydrolase, among others.We hope that our results can contribute to the development of drug candidates that can modify the course of neurodegeneration and may inspire future works that exploit the power of molecular hybridization in other proteins featuring large cavities.

摘要

综述

乙酰胆碱酯酶(AChE)可在外周和中枢神经系统的胆碱能突触处水解神经递质乙酰胆碱(ACh)。因此,它是胆碱能缺陷相关疾病(尤其是阿尔茨海默病,AD)的主要治疗靶点。AChE的工作速率接近扩散极限,被认为是自然界中效率最高的酶之一。考虑到其催化位点深埋在一个20埃深的腔底部,而在此之前有一个直径比必须穿过它的ACh的三甲铵基团还小的瓶颈,这一点尤其值得称赞。不仅其活性位点峡谷的特殊结构和氨基酸组成使AChE能够在很大程度上克服这一潜在缺陷,而且还为新型抑制剂候选药物的设计提供了诸多可能性。

在本综述中,我们总结了为占据AChE峡谷这一广阔区域以提高占有率从而获得亲和力更高的抑制剂所采用的不同方法。我们率先使用分子杂交技术设计在催化活性位点(CAS)具有延长结合的抑制剂,所达到的亲和力是迄今为止报道的最高值之一。通过合适的连接子连接一个与外周阴离子位点(PAS)结合的部分来进一步应用分子杂交技术以生成CAS延长结合剂,得到了跨越峡谷全长并到达PAS甚至与峡谷中部残基相互作用的多位点抑制剂。我们表明,多位点AChE抑制剂也可以通过另一种方式成功设计,即从优化的PAS结合剂开始,然后占据峡谷和CAS。源自多组分反应的PAS结合剂进行分子杂交得到了一种个位数皮摩尔级的多位点AChE抑制剂,其效力相对于最初的先导化合物提高了超过150万倍。这说明了分子杂交与峡谷占据在设计强效AChE抑制剂方面的强大联合。

除了AChE,我们还表明,AChE峡谷对多位点结合所施加的立体电子要求具有模板效应,可导致在AD以及其他神经和非神经疾病的其他关键生物学靶点(如β-分泌酶1(BACE-1)和淀粉样蛋白生成蛋白(β-淀粉样蛋白、tau蛋白、α-突触核蛋白、朊病毒蛋白、转甲状腺素蛋白和人胰岛淀粉样多肽)的聚集)中具有活性的化合物。将其他靶点的已知药效团用作PAS结合基序,能够合理设计在AChE内具有多位点结合且对多种靶点或病理事件(如氧化应激和神经炎症调节酶可溶性环氧化物水解酶等)具有活性的多靶点药物。

我们希望我们的研究结果能够有助于开发可改变神经退行性变进程的候选药物,并可能激发未来利用分子杂交技术在具有大腔的其他蛋白质中的潜力的研究工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fbc/10882973/7a0eb69169d8/ar3c00617_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验