Suppr超能文献

通过分析VISIA红色图像的颜色通道更精确地量化面部皮肤红斑。

Quantifying facial skin erythema more precisely by analyzing color channels of The VISIA Red images.

作者信息

Xu De-Tian, Yan Jian-Na, Cui Yong, Liu Wei

机构信息

a Department of Dermatology at No.1 Hospital , Anhui Medical University , Hefei , China.

b Department of Dermatology , The PLA General Hospital of Air Force , Beijing , China.

出版信息

J Cosmet Laser Ther. 2016 Oct;18(5):296-300. doi: 10.3109/14764172.2016.1157360. Epub 2016 May 12.

Abstract

BACKGROUND

The VISIA Red images were developed to document and measure facial skin erythema, but diffuse erythema cannot be fully segmented by the VISIA system due to the automatic thresholding segmentation method. Moreover, topical area analysis is not available in the system.

MATERIALS AND METHODS

Erythema severity degrees of 20 simulated Red images were designated 1-20 with 1-20 inflammatory lesions for each, respectively. The RGB channel mean values of each simulated image were acquired by ImageJ and relative intensity of red values calculated.

RESULTS

The relative intensity of red values positively correlate to erythema severity with a coefficient of 0.999345 (p < 0.001). We also proposed a method for calibration when pustules were present in the erythema area. The method was proved by mathematical reasoning and verified by certified dermatologists.

CONCLUSION

We demonstrated a simple and more precise method to quantify and compare facial skin erythema by analyzing the RGB channel values of the VISIA Red images. Our method brings convenience for erythema evaluation in dermatological studies.

摘要

背景

VISIA 红色图像用于记录和测量面部皮肤红斑,但由于采用自动阈值分割方法,VISIA 系统无法完全分割弥漫性红斑。此外,该系统无法进行局部面积分析。

材料与方法

20 张模拟红色图像的红斑严重程度分别指定为 1 - 20 级,每张图像分别有 1 - 20 个炎症性皮损。通过 ImageJ 获取每张模拟图像的 RGB 通道平均值,并计算红色值的相对强度。

结果

红色值的相对强度与红斑严重程度呈正相关,系数为 0.999345(p < 0.001)。我们还提出了一种在红斑区域出现脓疱时的校准方法。该方法经数学推理证明,并经皮肤科认证医生验证。

结论

我们通过分析 VISIA 红色图像的 RGB 通道值,展示了一种简单且更精确的方法来量化和比较面部皮肤红斑。我们的方法为皮肤病学研究中的红斑评估带来了便利。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验