Suppr超能文献

银纳米颗粒的职业接触限值:基于健康的通用值推导考量

Occupational exposure limit for silver nanoparticles: considerations on the derivation of a general health-based value.

作者信息

Weldon Brittany A, M Faustman Elaine, Oberdörster Günter, Workman Tomomi, Griffith William C, Kneuer Carsten, Yu Il Je

机构信息

a Institute for Risk Analysis and Risk Communication , University of Washington , Seattle , WA , USA .

b Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , WA , USA .

出版信息

Nanotoxicology. 2016 Sep;10(7):945-56. doi: 10.3109/17435390.2016.1148793. Epub 2016 Mar 16.

Abstract

With the increased production and widespread commercial use of silver nanoparticles (AgNPs), human and environmental exposures to silver nanoparticles are inevitably increasing. In particular, persons manufacturing and handling silver nanoparticles and silver nanoparticle containing products are at risk of exposure, potentially resulting in health hazards. While silver dusts, consisting of micro-sized particles and soluble compounds have established occupational exposure limits (OELs), silver nanoparticles exhibit different physicochemical properties from bulk materials. Therefore, we assessed silver nanoparticle exposure and related health hazards in order to determine whether an additional OEL may be needed. Dosimetric evaluations in our study identified the liver as the most sensitive target organ following inhalation exposure, and as such serves as the critical target organ for setting an occupational exposure standard for airborne silver nanoparticles. This study proposes an OEL of 0.19 μg/m(3) for silver nanoparticles derived from benchmark concentrations (BMCs) from subchronic rat inhalation toxicity assessments and the human equivalent concentration (HEC) with kinetic considerations and additional uncertainty factors. It is anticipated that this level will protect workers from potential health hazards, including lung, liver, and skin damage.

摘要

随着银纳米颗粒(AgNPs)产量的增加及其在商业上的广泛使用,人类和环境对银纳米颗粒的暴露不可避免地在增加。特别是,制造和处理银纳米颗粒以及含银纳米颗粒产品的人员面临暴露风险,这可能会导致健康危害。虽然由微米级颗粒和可溶性化合物组成的银尘已制定了职业接触限值(OELs),但银纳米颗粒具有与块状材料不同的物理化学性质。因此,我们评估了银纳米颗粒暴露及相关健康危害,以确定是否可能需要额外的职业接触限值。我们研究中的剂量学评估确定,吸入暴露后肝脏是最敏感的靶器官,因此是设定空气中银纳米颗粒职业接触标准的关键靶器官。本研究根据亚慢性大鼠吸入毒性评估的基准浓度(BMCs)以及考虑动力学和额外不确定性因素的人体等效浓度(HEC),提出了银纳米颗粒的职业接触限值为0.19μg/m³。预计该水平将保护工人免受潜在的健康危害,包括肺、肝和皮肤损伤。

相似文献

1
Occupational exposure limit for silver nanoparticles: considerations on the derivation of a general health-based value.
Nanotoxicology. 2016 Sep;10(7):945-56. doi: 10.3109/17435390.2016.1148793. Epub 2016 Mar 16.
5
Exposure assessment of workplaces manufacturing nanosized TiO2 and silver.
Inhal Toxicol. 2011 Mar;23(4):226-36. doi: 10.3109/08958378.2011.562567.
8
Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles.
J Appl Toxicol. 2016 Oct;36(10):1294-301. doi: 10.1002/jat.3304. Epub 2016 Mar 3.
10
Occupational exposure risk during spraying of biocidal paint containing silver nanoparticles.
J Occup Environ Hyg. 2021 Jun;18(6):237-249. doi: 10.1080/15459624.2021.1910277. Epub 2021 May 14.

引用本文的文献

2
Application of silver-based biocides in face masks intended for general use requires regulatory control.
Sci Total Environ. 2023 Apr 20;870:161889. doi: 10.1016/j.scitotenv.2023.161889. Epub 2023 Jan 31.
3
Ki-67 pulmonary immunoreactivity in silver nanoparticles toxicity: Size-rate dependent genotoxic impact.
Toxicol Rep. 2022 Sep 22;9:1813-1822. doi: 10.1016/j.toxrep.2022.09.011. eCollection 2022.
4
Toxicokinetics of silver element following inhalation of silver nitrate in rats.
Arch Toxicol. 2023 Mar;97(3):663-670. doi: 10.1007/s00204-022-03424-w. Epub 2022 Nov 27.
5
6
Brucella species-induced brucellosis: Antimicrobial effects, potential resistance and toxicity of silver and gold nanosized particles.
PLoS One. 2022 Jul 14;17(7):e0269963. doi: 10.1371/journal.pone.0269963. eCollection 2022.
7
The Fate of Intranasally Instilled Silver Nanoarchitectures.
Nano Lett. 2022 Jul 13;22(13):5269-5276. doi: 10.1021/acs.nanolett.2c01180. Epub 2022 Jun 30.
10
The effects of gene × environment interactions on silver nanoparticle toxicity in the respiratory system: An adverse outcome pathway.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Sep;13(5):e1708. doi: 10.1002/wnan.1708. Epub 2021 Mar 25.

本文引用的文献

2
Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials.
Part Fibre Toxicol. 2015 Apr 28;12:11. doi: 10.1186/s12989-015-0088-2.
3
Time course of lung retention and toxicity of inhaled particles: short-term exposure to nano-Ceria.
Arch Toxicol. 2014 Nov;88(11):2033-59. doi: 10.1007/s00204-014-1349-9. Epub 2014 Oct 2.
5
Standardizing benchmark dose calculations to improve science-based decisions in human health assessments.
Environ Health Perspect. 2014 May;122(5):499-505. doi: 10.1289/ehp.1307539. Epub 2014 Feb 25.
6
Oral toxicity of silver ions, silver nanoparticles and colloidal silver--a review.
Regul Toxicol Pharmacol. 2014 Feb;68(1):1-7. doi: 10.1016/j.yrtph.2013.11.002. Epub 2013 Nov 12.
7
Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats.
Part Fibre Toxicol. 2013 Aug 1;10:36. doi: 10.1186/1743-8977-10-36.
8
The stability of silver nanoparticles in a model of pulmonary surfactant.
Environ Sci Technol. 2013 Oct 1;47(19):11232-40. doi: 10.1021/es403377p. Epub 2013 Sep 18.
9
Exposure assessment of workers in printed electronics workplace.
Inhal Toxicol. 2013 Jul;25(8):426-34. doi: 10.3109/08958378.2013.800617. Epub 2013 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验