Suppr超能文献

健康成年大鼠单次 1.5 小时吸入暴露后 28 天内新鲜生成的原始 20nm 银纳米颗粒气溶胶的定量生物动力学。

Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm silver nanoparticle aerosols in healthy adult rats after a single 1½-hour inhalation exposure.

机构信息

Institute of Epidemiology, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg / Munich, Germany.

Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg / Munich, Germany.

出版信息

Part Fibre Toxicol. 2020 Jun 5;17(1):21. doi: 10.1186/s12989-020-00347-1.

Abstract

BACKGROUND

There is a steadily increasing quantity of silver nanoparticles (AgNP) produced for numerous industrial, medicinal and private purposes, leading to an increased risk of inhalation exposure for both professionals and consumers. Particle inhalation can result in inflammatory and allergic responses, and there are concerns about other negative health effects from either acute or chronic low-dose exposure.

RESULTS

To study the fate of inhaled AgNP, healthy adult rats were exposed to 1½-hour intra-tracheal inhalations of pristine Ag-radiolabeled, 20 nm AgNP aerosols (with mean doses across all rats of each exposure group of deposited NP-mass and NP-number being 13.5 ± 3.6 μg, 7.9 ± 3.2•10, respectively). At five time-points (0.75 h, 4 h, 24 h, 7d, 28d) post-exposure (p.e.), a complete balance of the [Ag]AgNP fate and its degradation products were quantified in organs, tissues, carcass, lavage and body fluids, including excretions. Rapid dissolution of [Ag]Ag-ions from the [Ag]AgNP surface was apparent together with both fast particulate airway clearance and long-term particulate clearance from the alveolar region to the larynx. The results are compatible with evidence from the literature that the released [Ag]Ag-ions precipitate rapidly to low-solubility [Ag]Ag-salts in the ion-rich epithelial lining lung fluid (ELF) and blood. Based on the existing literature, the degradation products rapidly translocate across the air-blood-barrier (ABB) into the blood and are eliminated via the liver and gall-bladder into the small intestine for fecal excretion. The pathway of [Ag]Ag-salt precipitates was compatible with auxiliary biokinetics studies at 24 h and 7 days after either intravenous injection or intratracheal or oral instillation of [Ag]AgNO solutions in sentinel groups of rats. However, dissolution of [Ag]Ag-ions appeared not to be complete after a few hours or days but continued over two weeks p.e. This was due to the additional formation of salt layers on the [Ag]AgNP surface that mediate and prolonge the dissolution process. The concurrent clearance of persistent cores of [Ag]AgNP and [Ag]Ag-salt precipitates results in the elimination of a fraction > 0.8 (per ILD) after one week, each particulate Ag-species accounting for about half of this. After 28 days p.e. the cleared fraction rises marginally to 0.94 while 2/3 of the remaining [Ag]AgNP are retained in the lungs and 1/3 in secondary organs and tissues with an unknown partition of the Ag species involved. However, making use of our previous biokinetics studies of poorly soluble [Au]AuNP of the same size and under identical experimental and exposure conditions (Kreyling et al., ACS Nano 2018), the kinetics of the ABB-translocation of [Ag]Ag-salt precipitates was estimated to reach a fractional maximum of 0.12 at day 3 p.e. and became undetectable 16 days p.e. Hence, persistent cores of [Ag]AgNP were cleared throughout the study period. Urinary [Ag]Ag excretion is minimal, finally accumulating to 0.016.

CONCLUSION

The biokinetics of inhaled [Ag]AgNP is relatively complex since the dissolving [Ag]Ag-ions (a) form salt layers on the [Ag]AgNP surface which retard dissolution and (b) the [Ag]Ag-ions released from the [Ag]AgNP surface form poorly-soluble precipitates of [Ag]Ag-salts in ELF. Therefore, hardly any [Ag]Ag-ion clearance occurs from the lungs but instead [Ag]AgNP and nano-sized precipitated [Ag]Ag-salt are cleared via the larynx into GIT and, in addition, via blood, liver, gall bladder into GIT with one common excretional pathway via feces out of the body.

摘要

背景

由于大量生产用于众多工业、医疗和私人用途的银纳米粒子(AgNP),专业人员和消费者吸入的风险增加。颗粒吸入会导致炎症和过敏反应,人们担心急性或慢性低剂量暴露会产生其他负面健康影响。

结果

为了研究吸入的 AgNP 的命运,健康成年大鼠接受了 1 个半小时的气管内吸入纯 Ag 放射性标记的 20nm AgNP 气溶胶(每组所有大鼠的平均剂量为沉积的 NP 质量和 NP 数分别为 13.5±3.6μg,7.9±3.2×10)。在暴露后 0.75 小时、4 小时、24 小时、7 天和 28 天(p.e.)的五个时间点,定量了器官、组织、尸体、灌洗液和体液(包括排泄物)中[Ag]AgNP 命运及其降解产物的完全平衡。从 [Ag]AgNP 表面迅速溶解[Ag]Ag-离子,同时快速清除气道中的颗粒和从肺泡区到喉头的长期颗粒清除。结果与文献中的证据一致,即释放的[Ag]Ag-离子迅速沉淀为富含离子的上皮衬里肺液(ELF)和血液中的低溶解度[Ag]Ag 盐。基于现有文献,降解产物迅速穿过血-气屏障(ABB)进入血液,并通过肝脏和胆囊进入小肠随粪便排出。[Ag]Ag 盐沉淀的途径与在哨兵大鼠中静脉注射、气管内或口服[Ag]AgNO 溶液后 24 小时和 7 天的辅助生物动力学研究一致。然而,几小时或几天后,[Ag]Ag-离子的溶解似乎并不完全,而是在 p.e.后持续两周。这是由于 [Ag]AgNP 表面上形成了额外的盐层,从而介导和延长了溶解过程。持续清除[Ag]AgNP 和[Ag]Ag 盐沉淀的持久核心导致在一周后消除了超过 0.8(每ILD)的分数,每个颗粒状 Ag 物种约占一半。在 p.e. 28 天后,清除分数略有上升至 0.94,而 2/3 的剩余[Ag]AgNP 保留在肺部,1/3 保留在次级器官和组织中,涉及的 Ag 物种的未知分区。然而,利用我们之前对相同尺寸和相同实验及暴露条件下的难溶性[Au]AuNP 的生物动力学研究(Kreyling 等人,ACS Nano 2018),估计 ABB 中[Ag]Ag 盐沉淀的转运动力学在第 3 天 p.e.达到 0.12 的分数最大值,并在第 16 天 p.e.变得无法检测。因此,整个研究期间都清除了持久的[Ag]AgNP 核心。尿液中的[Ag]Ag 排泄量很小,最终累积到 0.016。

结论

吸入的[Ag]AgNP 的生物动力学相对复杂,因为溶解的[Ag]Ag-离子(a)在[Ag]AgNP 表面形成盐层,从而减缓溶解速度,(b)从[Ag]AgNP 表面释放的[Ag]Ag-离子在 ELF 中形成难溶性的[Ag]Ag 盐沉淀。因此,几乎没有[Ag]Ag-离子从肺部清除,而是通过喉部分别通过 GIT 和血液、肝脏、胆囊进入 GIT 清除[Ag]AgNP 和纳米级沉淀的[Ag]Ag 盐,并且通过粪便从体内排出有一个共同的排泄途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c0a/7275317/abd4309f31d5/12989_2020_347_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验