Suppr超能文献

中间体积减小的囊泡在拉伸流中不对称不稳定性的实验观察

Experimental observation of the asymmetric instability of intermediate-reduced-volume vesicles in extensional flow.

作者信息

Dahl Joanna B, Narsimhan Vivek, Gouveia Bernardo, Kumar Sanjay, Shaqfeh Eric S G, Muller Susan J

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1460, USA.

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Soft Matter. 2016 Apr 20;12(16):3787-96. doi: 10.1039/c5sm03004h.

Abstract

Vesicles provide an attractive model system to understand the deformation of living cells in response to mechanical forces. These simple, enclosed lipid bilayer membranes are suitable for complementary theoretical, numerical, and experimental analysis. A recent study [Narsimhan, Spann, Shaqfeh, J. Fluid Mech., 2014, 750, 144] predicted that intermediate-aspect-ratio vesicles extend asymmetrically in extensional flow. Upon infinitesimal perturbation to the vesicle shape, the vesicle stretches into an asymmetric dumbbell with a cylindrical thread separating the two ends. While the symmetric stretching of high-aspect-ratio vesicles in extensional flow has been observed and characterized [Kantsler, Segre, Steinberg, Phys. Rev. Lett., 2008, 101, 048101] as well as recapitulated in numerical simulations by Narsimhan et al., experimental observation of the asymmetric stretching has not been reported. In this work, we present results from microfluidic cross-slot experiments observing this instability, along with careful characterization of the flow field, vesicle shape, and vesicle bending modulus. The onset of this shape transition depends on two non-dimensional parameters: reduced volume (a measure of vesicle asphericity) and capillary number (ratio of viscous to bending forces). We observed that every intermediate-reduced-volume vesicle that extends forms a dumbbell shape that is indeed asymmetric. For the subset of the intermediate-reduced-volume regime we could capture experimentally, we present an experimental phase diagram for asymmetric vesicle stretching that is consistent with the predictions of Narsimhan et al.

摘要

囊泡为理解活细胞在机械力作用下的变形提供了一个颇具吸引力的模型系统。这些简单的、封闭的脂质双分子层膜适用于互补的理论、数值和实验分析。最近的一项研究 [Narsimhan, Spann, Shaqfeh, J. Fluid Mech., 2014, 750, 144] 预测,中等纵横比的囊泡在拉伸流动中会不对称地伸展。对囊泡形状进行无穷小扰动后,囊泡会拉伸成一个不对称的哑铃状,中间有一个圆柱形细丝将两端隔开。虽然高纵横比囊泡在拉伸流动中的对称拉伸已被观察到并进行了表征 [Kantsler, Segre, Steinberg, Phys. Rev. Lett., 2008, 101, 048101],并且 Narsimhan 等人在数值模拟中也进行了重现,但尚未有关于不对称拉伸的实验观察报道。在这项工作中,我们展示了微流控交叉狭缝实验中观察到这种不稳定性的结果,以及对流场、囊泡形状和囊泡弯曲模量的仔细表征。这种形状转变的起始取决于两个无量纲参数:约化体积(囊泡非球形度的一种度量)和毛细管数(粘性力与弯曲力的比值)。我们观察到,每个伸展的中等约化体积囊泡都会形成一个确实不对称的哑铃形状。对于我们能够通过实验捕获的中等约化体积区域的子集,我们给出了一个与 Narsimhan 等人的预测一致的不对称囊泡拉伸实验相图。

相似文献

3
Orientation and internal flow of a vesicle in tank-treading motion in shear flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 2):026324. doi: 10.1103/PhysRevE.84.026324. Epub 2011 Aug 22.
4
Vesicle deformation by an axial load: from elongated shapes to tethered vesicles.
Biophys J. 1999 Apr;76(4):2056-71. doi: 10.1016/S0006-3495(99)77362-5.
6
Wrinkling of vesicles during transient dynamics in elongational flow.
Phys Rev Lett. 2008 Jan 18;100(2):028103. doi: 10.1103/PhysRevLett.100.028103. Epub 2008 Jan 17.
7
A theoretical study on the dynamics of a compound vesicle in shear flow.
Soft Matter. 2019 Sep 21;15(35):6994-7017. doi: 10.1039/c9sm01102a. Epub 2019 Aug 21.
8
Dynamics of vesicles in a wall-bounded shear flow.
Biophys J. 2005 Aug;89(2):1055-66. doi: 10.1529/biophysj.104.056036. Epub 2005 May 13.
9
Deformation of adsorbed lipid vesicles as a function of vesicle size.
Langmuir. 2010 Mar 2;26(5):3008-11. doi: 10.1021/la904743d.
10
Theoretical analysis of opening-up vesicles with single and two holes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 1):011913. doi: 10.1103/PhysRevE.71.011913. Epub 2005 Jan 31.

引用本文的文献

1
Conditions for a microfluidic creep experiment for microparticles using a cross-slot extensional flow device.
Biomicrofluidics. 2025 Mar 6;19(2):024102. doi: 10.1063/5.0239475. eCollection 2025 Mar.
2
Deformation, Rupture, and Morphology Hysteresis of Copolymer Nanovesicles in Uniform Shear Flow.
Langmuir. 2025 Mar 4;41(8):5083-5096. doi: 10.1021/acs.langmuir.4c04200. Epub 2024 Dec 31.
3
Microfluidic techniques for mechanical measurements of biological samples.
Biophys Rev (Melville). 2023 Jan 20;4(1):011303. doi: 10.1063/5.0130762. eCollection 2023 Mar.
4
Stationary shapes of axisymmetric vesicles beyond lowest-energy configurations.
Soft Matter. 2024 Mar 6;20(10):2258-2271. doi: 10.1039/d3sm01463k.
8
Evaluation and comparison of two microfluidic size separation strategies for vesicle suspensions.
Biomicrofluidics. 2017 May 26;11(3):034112. doi: 10.1063/1.4984302. eCollection 2017 May.
9
Measuring Cell Viscoelastic Properties Using a Microfluidic Extensional Flow Device.
Biophys J. 2016 Nov 1;111(9):2039-2050. doi: 10.1016/j.bpj.2016.09.034.

本文引用的文献

1
Vesicles and red blood cells in shear flow.
Soft Matter. 2008 Mar 20;4(4):653-657. doi: 10.1039/b716612e.
2
Mechanical characterization of cross-linked serum albumin microcapsules.
Soft Matter. 2014 Jul 7;10(25):4561-8. doi: 10.1039/c4sm00349g.
3
What are the true values of the bending modulus of simple lipid bilayers?
Chem Phys Lipids. 2015 Jan;185:3-10. doi: 10.1016/j.chemphyslip.2014.04.003. Epub 2014 Apr 16.
4
Recent developments in the field of bending rigidity measurements on membranes.
Adv Colloid Interface Sci. 2014 Jun;208:225-34. doi: 10.1016/j.cis.2014.03.003. Epub 2014 Mar 13.
5
Fluid vesicles in flow.
Adv Colloid Interface Sci. 2014 Jun;208:129-41. doi: 10.1016/j.cis.2014.02.004. Epub 2014 Feb 13.
6
Sedimentation-induced tether on a settling vesicle.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jul;88(1):010702. doi: 10.1103/PhysRevE.88.010702. Epub 2013 Jul 8.
7
Introductory lecture: basic quantities in model biomembranes.
Faraday Discuss. 2013;161:11-29; discussion 113-50. doi: 10.1039/c2fd20121f.
9
Amplification of thermal noise by vesicle dynamics.
Phys Rev Lett. 2012 Dec 28;109(26):268103. doi: 10.1103/PhysRevLett.109.268103. Epub 2012 Dec 27.
10
Characteristic spatial scale of vesicle pair interactions in a plane linear flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056306. doi: 10.1103/PhysRevE.85.056306. Epub 2012 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验