Dahl Joanna B, Narsimhan Vivek, Gouveia Bernardo, Kumar Sanjay, Shaqfeh Eric S G, Muller Susan J
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1460, USA.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Soft Matter. 2016 Apr 20;12(16):3787-96. doi: 10.1039/c5sm03004h.
Vesicles provide an attractive model system to understand the deformation of living cells in response to mechanical forces. These simple, enclosed lipid bilayer membranes are suitable for complementary theoretical, numerical, and experimental analysis. A recent study [Narsimhan, Spann, Shaqfeh, J. Fluid Mech., 2014, 750, 144] predicted that intermediate-aspect-ratio vesicles extend asymmetrically in extensional flow. Upon infinitesimal perturbation to the vesicle shape, the vesicle stretches into an asymmetric dumbbell with a cylindrical thread separating the two ends. While the symmetric stretching of high-aspect-ratio vesicles in extensional flow has been observed and characterized [Kantsler, Segre, Steinberg, Phys. Rev. Lett., 2008, 101, 048101] as well as recapitulated in numerical simulations by Narsimhan et al., experimental observation of the asymmetric stretching has not been reported. In this work, we present results from microfluidic cross-slot experiments observing this instability, along with careful characterization of the flow field, vesicle shape, and vesicle bending modulus. The onset of this shape transition depends on two non-dimensional parameters: reduced volume (a measure of vesicle asphericity) and capillary number (ratio of viscous to bending forces). We observed that every intermediate-reduced-volume vesicle that extends forms a dumbbell shape that is indeed asymmetric. For the subset of the intermediate-reduced-volume regime we could capture experimentally, we present an experimental phase diagram for asymmetric vesicle stretching that is consistent with the predictions of Narsimhan et al.
囊泡为理解活细胞在机械力作用下的变形提供了一个颇具吸引力的模型系统。这些简单的、封闭的脂质双分子层膜适用于互补的理论、数值和实验分析。最近的一项研究 [Narsimhan, Spann, Shaqfeh, J. Fluid Mech., 2014, 750, 144] 预测,中等纵横比的囊泡在拉伸流动中会不对称地伸展。对囊泡形状进行无穷小扰动后,囊泡会拉伸成一个不对称的哑铃状,中间有一个圆柱形细丝将两端隔开。虽然高纵横比囊泡在拉伸流动中的对称拉伸已被观察到并进行了表征 [Kantsler, Segre, Steinberg, Phys. Rev. Lett., 2008, 101, 048101],并且 Narsimhan 等人在数值模拟中也进行了重现,但尚未有关于不对称拉伸的实验观察报道。在这项工作中,我们展示了微流控交叉狭缝实验中观察到这种不稳定性的结果,以及对流场、囊泡形状和囊泡弯曲模量的仔细表征。这种形状转变的起始取决于两个无量纲参数:约化体积(囊泡非球形度的一种度量)和毛细管数(粘性力与弯曲力的比值)。我们观察到,每个伸展的中等约化体积囊泡都会形成一个确实不对称的哑铃形状。对于我们能够通过实验捕获的中等约化体积区域的子集,我们给出了一个与 Narsimhan 等人的预测一致的不对称囊泡拉伸实验相图。