文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物样品力学测量的微流控技术。

Microfluidic techniques for mechanical measurements of biological samples.

作者信息

Salipante Paul F

机构信息

National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA.

出版信息

Biophys Rev (Melville). 2023 Jan 20;4(1):011303. doi: 10.1063/5.0130762. eCollection 2023 Mar.


DOI:10.1063/5.0130762
PMID:38505816
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10903441/
Abstract

The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.

摘要

利用微流控技术进行力学性能测量正变得越来越普遍。微流控设备的制造使得在微米长度尺度上实现各种类型的流量控制和传感器集成,从而能够对生物材料进行检测。对于生物流体的流变学测量,小长度尺度非常适合达到高流速,并且可以对液滴大小的样本进行测量。微流控技术中可以通过控制流场、收缩和外部场来对单个生物颗粒的特性进行力学测量,通常以高通量测量的高采样率进行。微流控技术还能够测量生物表面,例如在微流控设备中培养的细胞层的弹性和渗透性等特性。本文综述了这些主题的最新进展,并讨论了未来的发展方向。

相似文献

[1]
Microfluidic techniques for mechanical measurements of biological samples.

Biophys Rev (Melville). 2023-1-20

[2]
Bio-microfluidics: biomaterials and biomimetic designs.

Adv Mater. 2010-1-12

[3]
Microfluidic Approaches for Microactuators: From Fabrication, Actuation, to Functionalization.

Small. 2023-6

[4]
Materials and methods for droplet microfluidic device fabrication.

Lab Chip. 2022-3-1

[5]
A high-throughput microfluidic device inspired by the Wheatstone bridge principle for characterizing the mechanical properties of single cells.

Anal Methods. 2022-12-1

[6]
Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells.

Small. 2020-3

[7]
Hybrid Digital-Droplet Microfluidic Chip for Applications in Droplet Digital Nucleic Acid Amplification: Design, Fabrication and Characterization.

Sensors (Basel). 2023-5-20

[8]
Silicon-Based 3D Microfluidics for Parallelization of Droplet Generation.

Micromachines (Basel). 2023-6-23

[9]
Automatic elasticity measurement of single cells using a microfluidic system with real-time image processing.

Annu Int Conf IEEE Eng Med Biol Soc. 2023-7

[10]
High-throughput rheology in a microfluidic device.

Lab Chip. 2011-9-28

引用本文的文献

[1]
Noninvasive characterization of oocyte deformability in microconstrictions.

Sci Adv. 2025-2-21

[2]
Design of 3D printed chip to improve sensitivity of platelet adhesion through reinjection: Effect of alcohol consumption on platelet adhesion.

Biomicrofluidics. 2025-1-3

[3]
Non-invasive measurement of wall shear stress in microfluidic chip for osteoblast cell culture using improved depth estimation of defocus particle tracking method.

Biomicrofluidics. 2024-10-24

[4]
Comparing the Mechanical Properties of Rice Cells and Protoplasts under PEG6000 Drought Stress Using Double Resonator Piezoelectric Cytometry.

Biosensors (Basel). 2024-6-9

[5]
A review of acoustofluidic separation of bioparticles.

Biophys Rev. 2023-8-29

[6]
Quantification of Blood Viscoelasticity under Microcapillary Blood Flow.

Micromachines (Basel). 2023-4-3

[7]
Extracellular Vesicles Isolation from Large Volume Samples Using a Polydimethylsiloxane-Free Microfluidic Device.

Int J Mol Sci. 2023-4-27

本文引用的文献

[1]
A small-volume microcapillary rheometer.

Rheol Acta. 2022

[2]
Real-Time Measurement of Cell Mechanics as a Clinically Relevant Readout of an In Vitro Lung Fibrosis Model Established on a Bioinspired Basement Membrane.

Adv Mater. 2022-10

[3]
Fire-Shaped Nozzles to Produce a Stress Peak for Deformability Studies.

Polymers (Basel). 2022-7-7

[4]
Automated measurement of cell mechanical properties using an integrated dielectrophoretic microfluidic device.

iScience. 2022-4-20

[5]
Revealing elasticity of largely deformed cells flowing along confining microchannels.

RSC Adv. 2018-1-3

[6]
Revealing anisotropic elasticity of endothelium under fluid shear stress.

Acta Biomater. 2022-6

[7]
A Review of Microfluidic Devices for Rheological Characterisation.

Micromachines (Basel). 2022-1-22

[8]
A vesicle microrheometer for high-throughput viscosity measurements of lipid and polymer membranes.

Biophys J. 2022-3-15

[9]
Blood vessel-on-a-chip examines the biomechanics of microvasculature.

Soft Matter. 2021-12-22

[10]
Nonlinear Transient and Steady State Stretching of Deflated Vesicles in Flow.

Langmuir. 2021-12-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索