Reboucas Rodrigo B, Faizi Hammad A, Miksis Michael J, Vlahovska Petia M
Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA.
Soft Matter. 2024 Mar 6;20(10):2258-2271. doi: 10.1039/d3sm01463k.
We conduct a systematic exploration of the energy landscape of vesicle morphologies within the framework of the Helfrich model. Vesicle shapes are determined by minimizing the elastic energy subject to constraints of constant area and volume. The results show that pressurized vesicles can adopt higher-energy spindle-like configurations that require the action of point forces at the poles. If the internal pressure is lower than the external one, multilobed shapes are predicted. We utilize our results to rationalize experimentally observed spindle shapes of giant vesicles in a uniform AC electric field.
我们在赫尔弗里希模型的框架内,对囊泡形态的能量景观进行了系统探索。囊泡形状通过在恒定面积和体积的约束下使弹性能最小化来确定。结果表明,受压囊泡可以呈现出需要在两极施加点力的高能纺锤状构型。如果内部压力低于外部压力,则预测会出现多叶形状。我们利用我们的结果来合理解释在均匀交流电场中实验观察到的巨型囊泡的纺锤形状。