Oltean Alina, Huang Jie, Beebe David C, Taber Larry A
Department of Biomedical Engineering, Washington University, One Brookings Drive, Campus Box 1097, Saint Louis, MO, 63130-4899, USA.
Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, 63130, USA.
Biomech Model Mechanobiol. 2016 Dec;15(6):1405-1421. doi: 10.1007/s10237-016-0771-8. Epub 2016 Mar 16.
In the early embryo, the eyes form initially as relatively spherical optic vesicles (OVs) that protrude from both sides of the brain tube. Each OV grows until it contacts and adheres to the overlying surface ectoderm (SE) via an extracellular matrix (ECM) that is secreted by the SE and OV. The OV and SE then thicken and bend inward (invaginate) to create the optic cup (OC) and lens vesicle, respectively. While constriction of cell apices likely plays a role in SE invagination, the mechanisms that drive OV invagination are poorly understood. Here, we used experiments and computational modeling to explore the hypothesis that the ECM locally constrains the growing OV, forcing it to invaginate. In chick embryos, we examined the need for the ECM by (1) removing SE at different developmental stages and (2) exposing the embryo to collagenase. At relatively early stages of invagination (Hamburger-Hamilton stage HH14[Formula: see text]), removing the SE caused the curvature of the OV to reverse as it 'popped out' and became convex, but the OV remained concave at later stages (HH15) and invaginated further during subsequent culture. Disrupting the ECM had a similar effect, with the OV popping out at early to mid-stages of invagination (HH14[Formula: see text] to HH14[Formula: see text]). These results suggest that the ECM is required for the early stages but not the late stages of OV invagination. Microindentation tests indicate that the matrix is considerably stiffer than the cellular OV, and a finite-element model consisting of a growing spherical OV attached to a relatively stiff layer of ECM reproduced the observed behavior, as well as measured temporal changes in OV curvature, wall thickness, and invagination depth reasonably well. Results from our study also suggest that the OV grows relatively uniformly, while the ECM is stiffer toward the center of the optic vesicle. These results are consistent with our matrix-constraint hypothesis, providing new insight into the mechanics of OC (early retina) morphogenesis.
在早期胚胎中,眼睛最初形成相对球形的视泡(OVs),从脑管两侧突出。每个视泡生长,直到通过表面外胚层(SE)和视泡分泌的细胞外基质(ECM)与覆盖的表面外胚层(SE)接触并粘附。然后,视泡和表面外胚层分别增厚并向内弯曲(内陷),形成视杯(OC)和晶状体泡。虽然细胞顶端的收缩可能在表面外胚层内陷中起作用,但驱动视泡内陷的机制尚不清楚。在这里,我们使用实验和计算模型来探索细胞外基质局部限制生长中的视泡,迫使其内陷的假设。在鸡胚中,我们通过(1)在不同发育阶段去除表面外胚层和(2)将胚胎暴露于胶原酶来研究对细胞外基质的需求。在相对早期的内陷阶段(汉堡-汉密尔顿阶段HH14[公式:见正文]),去除表面外胚层会导致视泡的曲率反转,因为它“弹出”并变得凸出,但视泡在后期阶段(HH15)仍保持凹陷,并在随后的培养中进一步内陷。破坏细胞外基质有类似的效果,视泡在早期到中期内陷阶段(HH14[公式:见正文]到HH14[公式:见正文])弹出。这些结果表明,细胞外基质是视泡早期内陷所必需的,但不是后期内陷所必需的。微压痕测试表明,基质比细胞视泡硬得多,由附着在相对较硬的细胞外基质层上的生长中的球形视泡组成的有限元模型很好地再现了观察到的行为,以及视泡曲率、壁厚和内陷深度的测量时间变化。我们的研究结果还表明,视泡生长相对均匀,而细胞外基质在视泡中心方向更硬。这些结果与我们的基质约束假设一致,为视杯(早期视网膜)形态发生的力学提供了新的见解。