Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859, Campinas, São Paulo, Brazil.
Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA.
Phys Rev E. 2016 Feb;93(2):022101. doi: 10.1103/PhysRevE.93.022101. Epub 2016 Feb 1.
For discrete-state stochastic systems obeying Markovian dynamics, we establish the counterpart of the conditional reversibility theorem obtained by Gallavotti for deterministic systems [Ann. de l'Institut Henri Poincaré (A) 70, 429 (1999)]. Our result states that stochastic trajectories conditioned on opposite values of entropy production are related by time reversal, in the long-time limit. In other words, the probability of observing a particular sequence of events, given a long trajectory with a specified entropy production rate σ, is the same as the probability of observing the time-reversed sequence of events, given a trajectory conditioned on the opposite entropy production, -σ, where both trajectories are sampled from the same underlying Markov process. To obtain our result, we use an equivalence between conditioned ("microcanonical") and biased ("canonical") ensembles of nonequilibrium trajectories. We provide an example to illustrate our findings.
对于服从马尔可夫动力学的离散状态随机系统,我们建立了与 Gallavotti 为确定性系统获得的条件可逆性定理相对应的定理[Ann. de l'Institut Henri Poincaré (A) 70, 429 (1999)]。我们的结果表明,在长时间限制下,条件熵产生值相反的随机轨迹通过时间反转相关。换句话说,给定具有指定熵产生率 σ 的长轨迹,观察特定事件序列的概率与观察轨迹条件熵产生为 -σ 的时间反转序列的概率相同,其中两个轨迹都是从相同的基本马尔可夫过程中采样得到的。为了得到我们的结果,我们使用了条件(“微正则”)和有偏(“正则”)非平衡轨迹集合之间的等价关系。我们提供了一个例子来说明我们的发现。