Laboratoire J. A. Dieudonné, UMR CNRS 6621, Université de Nice Sophia-Antipolis, Nice 06108, France.
Phys Rev Lett. 2013 Sep 20;111(12):120601. doi: 10.1103/PhysRevLett.111.120601. Epub 2013 Sep 16.
Generalizations of the microcanonical and canonical ensembles for paths of Markov processes have been proposed recently to describe the statistical properties of nonequilibrium systems driven in steady states. Here, we propose a theory of these ensembles that unifies and generalizes earlier results and show how it is fundamentally related to the large deviation properties of nonequilibrium systems. Using this theory, we provide conditions for the equivalence of nonequilibrium ensembles, generalizing those found for equilibrium systems, construct driven physical processes that generate these ensembles, and rederive in a simple way known and new product rules for their transition rates. A nonequilibrium diffusion model is used to illustrate these results.
最近提出了用于描述稳态驱动的非平衡系统统计性质的马尔可夫过程路径的正则和正则系综的推广。在这里,我们提出了一种关于这些系综的理论,它统一并推广了早期的结果,并展示了它与非平衡系统大偏差性质的根本关系。使用该理论,我们提供了非平衡系综等效的条件,推广了那些在平衡系统中发现的条件,构造了产生这些系综的驱动物理过程,并以简单的方式重新推导了它们的转移率的已知和新的乘积规则。一个非平衡扩散模型被用来说明这些结果。