Suppr超能文献

通过结构导向重组探索纤维素酶热稳定性的机制

Exploring the Mechanism Responsible for Cellulase Thermostability by Structure-Guided Recombination.

作者信息

Chang Chia-Jung, Lee Cheng-Chung, Chan Yueh-Te, Trudeau Devin L, Wu Mei-Huey, Tsai Chih-Hsuan, Yu Su-May, Ho Tuan-Hua David, Wang Andrew H-J, Hsiao Chwan-Deng, Arnold Frances H, Chao Yu-Chan

机构信息

Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.

Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC.

出版信息

PLoS One. 2016 Mar 17;11(3):e0147485. doi: 10.1371/journal.pone.0147485. eCollection 2016.

Abstract

Cellulases from Bacillus and Geobacillus bacteria are potentially useful in the biofuel and animal feed industries. One of the unique characteristics of these enzymes is that they are usually quite thermostable. We previously identified a cellulase, GsCelA, from thermophilic Geobacillus sp. 70PC53, which is much more thermostable than its Bacillus homolog, BsCel5A. Thus, these two cellulases provide a pair of structures ideal for investigating the mechanism regarding how these cellulases can retain activity at high temperature. In the present study, we applied the SCHEMA non-contiguous recombination algorithm as a novel tool, which assigns protein sequences into blocks for domain swapping in a way that lessens structural disruption, to generate a set of chimeric proteins derived from the recombination of GsCelA and BsCel5A. Analyzing the activity and thermostability of this designed library set, which requires only a limited number of chimeras by SCHEMA calculations, revealed that one of the blocks may contribute to the higher thermostability of GsCelA. When tested against swollen Avicel, the highly thermostable chimeric cellulase C10 containing this block showed significantly higher activity (22%-43%) and higher thermostability compared to the parental enzymes. With further structural determinations and mutagenesis analyses, a 310 helix was identified as being responsible for the improved thermostability of this block. Furthermore, in the presence of ionic calcium and crown ether (CR), the chimeric C10 was found to retain 40% residual activity even after heat treatment at 90°C. Combining crystal structure determinations and structure-guided SCHEMA recombination, we have determined the mechanism responsible for the high thermostability of GsCelA, and generated a novel recombinant enzyme with significantly higher activity.

摘要

来自芽孢杆菌属和嗜热栖热菌属细菌的纤维素酶在生物燃料和动物饲料行业具有潜在用途。这些酶的一个独特特性是它们通常相当耐热。我们之前从嗜热栖热菌属菌株70PC53中鉴定出一种纤维素酶GsCelA,它比其芽孢杆菌属同源物BsCel5A的耐热性高得多。因此,这两种纤维素酶提供了一对理想的结构,可用于研究这些纤维素酶如何在高温下保持活性的机制。在本研究中,我们应用了SCHEMA非连续重组算法作为一种新工具,该算法将蛋白质序列分成块进行结构域交换,以减少结构破坏,从而产生一组由GsCelA和BsCel5A重组而来的嵌合蛋白。通过分析这个设计文库集的活性和耐热性(通过SCHEMA计算,该文库集只需要有限数量的嵌合体),发现其中一个块可能有助于GsCelA具有更高的耐热性。当用膨胀的微晶纤维素进行测试时,含有该块的高度耐热的嵌合纤维素酶C10与亲本酶相比,显示出显著更高的活性(22%-43%)和更高的耐热性。通过进一步的结构测定和诱变分析,确定了一个310螺旋负责该块耐热性的提高。此外,在离子钙和冠醚(CR)存在的情况下,发现嵌合体C10即使在90°C热处理后仍保留40%的残余活性。结合晶体结构测定和结构导向的SCHEMA重组,我们确定了GsCelA具有高耐热性的机制,并产生了一种具有显著更高活性的新型重组酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3024/4795783/069a47d6971b/pone.0147485.g001.jpg

相似文献

1
Exploring the Mechanism Responsible for Cellulase Thermostability by Structure-Guided Recombination.
PLoS One. 2016 Mar 17;11(3):e0147485. doi: 10.1371/journal.pone.0147485. eCollection 2016.
4
Activity and Thermostability of GH5 Endoglucanase Chimeras from Mesophilic and Thermophilic Parents.
Appl Environ Microbiol. 2019 Feb 20;85(5). doi: 10.1128/AEM.02079-18. Print 2019 Mar 1.
5
Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains.
Bioresour Technol. 2010 Nov;101(22):8798-806. doi: 10.1016/j.biortech.2010.06.001.
8
Advanced evolutionary molecular engineering to produce thermostable cellulase by using a small but efficient library.
Protein Eng Des Sel. 2013 Jan;26(1):73-9. doi: 10.1093/protein/gzs072. Epub 2012 Oct 22.
9
SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability.
J Biol Chem. 2009 Sep 25;284(39):26229-33. doi: 10.1074/jbc.C109.034058. Epub 2009 Jul 22.
10
Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis.
Appl Environ Microbiol. 2012 May;78(9):3458-64. doi: 10.1128/AEM.07985-11. Epub 2012 Mar 2.

引用本文的文献

2
The S-S bridge mutation between the A2 and A4 loops (T416C-I432C) of Cel7A of enhances catalytic activity and thermostability.
Appl Environ Microbiol. 2024 Apr 17;90(4):e0232923. doi: 10.1128/aem.02329-23. Epub 2024 Mar 5.
3
Biochemical and structural characterisation of a family GH5 cellulase from endosymbiont of shipworm P. megotara.
Biotechnol Biofuels Bioprod. 2023 Apr 4;16(1):61. doi: 10.1186/s13068-023-02307-1.
5
Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective.
Front Bioeng Biotechnol. 2021 Dec 15;9:794304. doi: 10.3389/fbioe.2021.794304. eCollection 2021.
6
Cellulases: From Bioactivity to a Variety of Industrial Applications.
Biomimetics (Basel). 2021 Jul 5;6(3):44. doi: 10.3390/biomimetics6030044.
7
Molecular cloning and characterization of a thermostable and halotolerant endo-β-1,4-glucanase from sp. ALW1.
3 Biotech. 2021 May;11(5):250. doi: 10.1007/s13205-021-02801-z. Epub 2021 May 1.
8
phage ferredoxin: structural characterization and electron transfer to cyanobacterial sulfite reductases.
J Biol Chem. 2020 Jul 31;295(31):10610-10623. doi: 10.1074/jbc.RA120.013501. Epub 2020 May 19.
9
Engineering Robust Cellulases for Tailored Lignocellulosic Degradation Cocktails.
Int J Mol Sci. 2020 Feb 26;21(5):1589. doi: 10.3390/ijms21051589.

本文引用的文献

1
Crowning proteins: modulating the protein surface properties using crown ethers.
Angew Chem Int Ed Engl. 2014 Nov 24;53(48):13054-8. doi: 10.1002/anie.201405664. Epub 2014 Oct 6.
2
Engineered thermostable fungal cellulases exhibit efficient synergistic cellulose hydrolysis at elevated temperatures.
Biotechnol Bioeng. 2014 Dec;111(12):2390-7. doi: 10.1002/bit.25308. Epub 2014 Aug 5.
4
Innovation by homologous recombination.
Curr Opin Chem Biol. 2013 Dec;17(6):902-9. doi: 10.1016/j.cbpa.2013.10.007. Epub 2013 Oct 29.
5
Hypocrea jecorina cellobiohydrolase I stabilizing mutations identified using noncontiguous recombination.
ACS Synth Biol. 2013 Dec 20;2(12):690-6. doi: 10.1021/sb400010m. Epub 2013 Jun 3.
6
Efficient sampling of SCHEMA chimera families to identify useful sequence elements.
Methods Enzymol. 2013;523:351-68. doi: 10.1016/B978-0-12-394292-0.00016-3.
7
Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures.
Biotechnol Bioeng. 2013 Jul;110(7):1874-83. doi: 10.1002/bit.24864. Epub 2013 Mar 1.
8
Chimeragenesis of distantly-related proteins by noncontiguous recombination.
Protein Sci. 2013 Feb;22(2):231-8. doi: 10.1002/pro.2202. Epub 2012 Dec 29.
9
A diverse set of family 48 bacterial glycoside hydrolase cellulases created by structure-guided recombination.
FEBS J. 2012 Dec;279(24):4453-65. doi: 10.1111/febs.12032. Epub 2012 Nov 9.
10
Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods.
Protein Eng Des Sel. 2012 Dec;25(12):827-33. doi: 10.1093/protein/gzs058. Epub 2012 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验