Liu Yayuan, Lin Dingchang, Liang Zheng, Zhao Jie, Yan Kai, Cui Yi
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
Nat Commun. 2016 Mar 18;7:10992. doi: 10.1038/ncomms10992.
Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizing minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm(-2) in both carbonate and ether electrolyte. The advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.
锂金属是下一代高能量密度电池的理想阳极。然而,枝晶生长、副反应和无限的相对体积变化阻碍了它的实际应用。在此,我们展示了一种通过将熔融锂注入聚合物基体来设计有前景的金属锂阳极的方法。所采用的静电纺丝聚酰亚胺对高活性熔融锂具有稳定性,并且通过一层氧化锌涂层形成保形层以使表面具有亲锂性,熔融锂能够被吸入基体中,从而得到一种纳米多孔锂电极。重要的是,聚合物主链能够实现均匀的锂剥离/电镀,成功地将锂限制在基体内,实现最小的体积变化并有效抑制枝晶。多孔电极降低了有效电流密度;因此,即使在碳酸盐和醚类电解质中5 mA cm(-2)的高电流密度下,也能实现平坦的电压曲线和超过100次循环的稳定循环。多孔聚合物基体的优点为锂金属阳极的设计原理提供了重要的见解。