Suppr超能文献

制定指标以衡量美国灾后社区的恢复情况。

Developing indicators to measure post-disaster community recovery in the United States.

作者信息

Horney Jennifer, Dwyer Caroline, Aminto Meghan, Berke Philip, Smith Gavin

机构信息

Associate Professor, Epidemiology and Biostatistics, at Texas A&M University, United States.

Research Assistant, City and Regional Planning, at the University of North Carolina at Chapel Hill, United States.

出版信息

Disasters. 2017 Jan;41(1):124-149. doi: 10.1111/disa.12190. Epub 2016 Mar 14.

Abstract

Disaster recovery is a key capability of federal, state, and local government. To support this capability effectively practitioners need useful and validated metrics to document how well a community is recovering from a particular disaster. This study developed and categorised recovery indicators according to the Federal Emergency Management Agency (FEMA)'s Recovery Support Functions and Recovery Mission Area Core Capabilities through a literature review, an evaluation of the pre-disaster recovery plans for 87 coastal jurisdictions, and a case study of two communities (New Hanover County, North Carolina, and the City of Hoboken, New Jersey). Metrics identified in the literature were validated through the recovery plan review and the case study. The research team also identified sources for both baseline and current status data. Based on these findings, a user-friendly checklist for practitioners was established, which will be piloted with practice partners during a future disaster recovery initiative.

摘要

灾难恢复是联邦、州和地方政府的一项关键能力。为了有效支持这一能力,从业人员需要有用且经过验证的指标,以记录社区从特定灾难中恢复的情况。本研究通过文献综述、对87个沿海管辖区的灾前恢复计划进行评估以及对两个社区(北卡罗来纳州的新汉诺威县和新泽西州的霍博肯市)的案例研究,根据联邦紧急事务管理局(FEMA)的恢复支持功能和恢复任务领域核心能力,制定并分类了恢复指标。通过恢复计划审查和案例研究对文献中确定的指标进行了验证。研究团队还确定了基线数据和现状数据的来源。基于这些发现,为从业人员建立了一份用户友好的清单,该清单将在未来的灾难恢复倡议中与实践伙伴进行试点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验