Suppr超能文献

漆树酸、水杨酸和油酸对乳腺癌细胞的细胞生物能量功能有不同影响。

Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.

作者信息

Radde Brandie N, Alizadeh-Rad Negin, Price Stephanie M, Schultz David J, Klinge Carolyn M

机构信息

Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, Kentucky 40292.

Department of Biology, University of Louisville, Louisville, Kentucky 40292.

出版信息

J Cell Biochem. 2016 Nov;117(11):2521-32. doi: 10.1002/jcb.25544. Epub 2016 Apr 14.

Abstract

Anacardic acid is a dietary and medicinal phytochemical that inhibits breast cancer cell proliferation and uncouples oxidative phosphorylation (OXPHOS) in isolated rat liver mitochondria. Since mitochondrial-targeted anticancer therapy (mitocans) may be useful in breast cancer, we examined the effect of anacardic acid on cellular bioenergetics and OXPHOS pathway proteins in breast cancer cells modeling progression to endocrine-independence: MCF-7 estrogen receptor α (ERα)+ endocrine-sensitive; LCC9 and LY2 ERα+, endocrine-resistant, and MDA-MB-231 triple negative breast cancer (TNBC) cells. At concentrations similar to cell proliferation IC50 s, anacardic acid reduced ATP-linked oxygen consumption rate (OCR), mitochondrial reserve capacity, and coupling efficiency while increasing proton leak, reflecting mitochondrial toxicity which was greater in MCF-7 compared to endocrine-resistant and TNBC cells. These results suggest tolerance in endocrine-resistant and TNBC cells to mitochondrial stress induced by anacardic acid. Since anacardic acid is an alkylated 2-hydroxybenzoic acid, the effects of salicylic acid (SA, 2-hydroxybenzoic acid moiety) and oleic acid (OA, monounsaturated alkyl moiety) were tested. SA inhibited whereas OA stimulated cell viability. In contrast to stimulation of basal OCR by anacardic acid (uncoupling effect), neither SA nor OA altered basal OCR- except OA inhibited basal and ATP-linked OCR, and increased ECAR, in MDA-MB-231 cells. Changes in OXPHOS proteins correlated with changes in OCR. Overall, neither the 2-hydroxybenzoic acid moiety nor the monounsaturated alky moiety of anacardic acid is solely responsible for the observed mitochondria-targeted anticancer activity in breast cancer cells and hence both moieties are required in the same molecule for the observed effects. J. Cell. Biochem. 117: 2521-2532, 2016. © 2016 Wiley Periodicals, Inc.

摘要

漆树酸是一种具有饮食和药用价值的植物化学物质,它能够抑制乳腺癌细胞的增殖,并使分离的大鼠肝脏线粒体中的氧化磷酸化(OXPHOS)解偶联。由于线粒体靶向抗癌疗法(mitocans)可能对乳腺癌有效,我们研究了漆树酸对模拟进展为内分泌独立性的乳腺癌细胞中细胞生物能量学和OXPHOS途径蛋白的影响:MCF-7雌激素受体α(ERα)+内分泌敏感型;LCC9和LY2 ERα+内分泌抵抗型,以及MDA-MB-231三阴性乳腺癌(TNBC)细胞。在与细胞增殖IC50相似的浓度下,漆树酸降低了ATP相关的氧消耗率(OCR)、线粒体储备能力和偶联效率,同时增加了质子泄漏,这反映了线粒体毒性,与内分泌抵抗型和TNBC细胞相比,MCF-7中的线粒体毒性更大。这些结果表明内分泌抵抗型和TNBC细胞对漆树酸诱导的线粒体应激具有耐受性。由于漆树酸是一种烷基化的2-羟基苯甲酸,因此测试了水杨酸(SA,2-羟基苯甲酸部分)和油酸(OA,单不饱和烷基部分)的作用。SA抑制而OA刺激细胞活力。与漆树酸对基础OCR的刺激作用(解偶联效应)相反,SA和OA均未改变基础OCR——除了OA抑制MDA-MB-231细胞中的基础和ATP相关OCR,并增加细胞外酸化率(ECAR)。OXPHOS蛋白的变化与OCR的变化相关。总体而言,漆树酸的2-羟基苯甲酸部分和单不饱和烷基部分都不是导致在乳腺癌细胞中观察到的线粒体靶向抗癌活性的唯一原因,因此,为了产生观察到的效果,同一分子中这两个部分都是必需的。《细胞生物化学杂志》117: 2521 - 2532, 2016。© 2016威利期刊公司

相似文献

1
Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.
J Cell Biochem. 2016 Nov;117(11):2521-32. doi: 10.1002/jcb.25544. Epub 2016 Apr 14.
3
Anacardic acid inhibits estrogen receptor alpha-DNA binding and reduces target gene transcription and breast cancer cell proliferation.
Mol Cancer Ther. 2010 Mar;9(3):594-605. doi: 10.1158/1535-7163.MCT-09-0978. Epub 2010 Mar 2.
4
Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells.
Exp Cell Res. 2016 Sep 10;347(1):222-231. doi: 10.1016/j.yexcr.2016.08.006. Epub 2016 Aug 8.
5
Energy Metabolism Drugs Block Triple Negative Breast Metastatic Cancer Cell Phenotype.
Mol Pharm. 2018 Jun 4;15(6):2151-2164. doi: 10.1021/acs.molpharmaceut.8b00015. Epub 2018 May 23.
8
Nitro-fatty acid inhibition of triple-negative breast cancer cell viability, migration, invasion, and tumor growth.
J Biol Chem. 2018 Jan 26;293(4):1120-1137. doi: 10.1074/jbc.M117.814368. Epub 2017 Nov 20.
10
Transcriptomic response of breast cancer cells to anacardic acid.
Sci Rep. 2018 May 23;8(1):8063. doi: 10.1038/s41598-018-26429-x.

引用本文的文献

1
Long-Chain Fatty Acids Alter Estrogen Receptor Expression in Breast Cancer Cells.
Int J Mol Sci. 2025 Jul 13;26(14):6722. doi: 10.3390/ijms26146722.
2
Viability of HepG2 and MCF-7 cells is not correlated with mitochondrial bioenergetics.
Sci Rep. 2023 Jul 4;13(1):10822. doi: 10.1038/s41598-023-37677-x.
5
Mitochondria-targeted triphenylphosphonium-based compounds do not affect estrogen receptor α.
PeerJ. 2020 Mar 25;8:e8803. doi: 10.7717/peerj.8803. eCollection 2020.
6
Anacardic acid mitigates liver fat accumulation and impaired glucose tolerance in mice fed a high-fat and high-sucrose diet.
Food Sci Nutr. 2020 Jan 17;8(2):796-804. doi: 10.1002/fsn3.1322. eCollection 2020 Feb.
9
Transcriptomic response of breast cancer cells to anacardic acid.
Sci Rep. 2018 May 23;8(1):8063. doi: 10.1038/s41598-018-26429-x.
10
Genome-wide miRNA response to anacardic acid in breast cancer cells.
PLoS One. 2017 Sep 8;12(9):e0184471. doi: 10.1371/journal.pone.0184471. eCollection 2017.

本文引用的文献

1
The Emerging Hallmarks of Cancer Metabolism.
Cell Metab. 2016 Jan 12;23(1):27-47. doi: 10.1016/j.cmet.2015.12.006.
3
Polyphenols as mitochondria-targeted anticancer drugs.
Cancer Lett. 2015 Oct 1;366(2):141-9. doi: 10.1016/j.canlet.2015.07.004. Epub 2015 Jul 13.
4
Potential biological applications of bio-based anacardic acids and their derivatives.
Int J Mol Sci. 2015 Apr 16;16(4):8569-90. doi: 10.3390/ijms16048569.
5
Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporter human P-glycoprotein.
Biomed Pharmacother. 2015 Mar;70:140-5. doi: 10.1016/j.biopha.2015.01.007. Epub 2015 Jan 15.
6
Elevated oleic acid serum concentrations in patients suffering from alcohol dependence.
J Mol Psychiatry. 2013 Aug 23;1(1):13. doi: 10.1186/2049-9256-1-13. eCollection 2013.
7
Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate.
PLoS One. 2014 Oct 31;9(10):e109916. doi: 10.1371/journal.pone.0109916. eCollection 2014.
9
Mitochondrial toxicity of cardiac drugs and its relevance to mitochondrial disorders.
Expert Opin Drug Metab Toxicol. 2015 Jan;11(1):15-24. doi: 10.1517/17425255.2015.973401. Epub 2014 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验