Suppr超能文献

自动驾驶车辆车道级定位的综合实用视觉系统。

Comprehensive and Practical Vision System for Self-Driving Vehicle Lane-Level Localization.

出版信息

IEEE Trans Image Process. 2016 May;25(5):2075-88. doi: 10.1109/TIP.2016.2539683. Epub 2016 Mar 8.

Abstract

Vehicle lane-level localization is a fundamental technology in autonomous driving. To achieve accurate and consistent performance, a common approach is to use the LIDAR technology. However, it is expensive and computational demanding, and thus not a practical solution in many situations. This paper proposes a stereovision system, which is of low cost, yet also able to achieve high accuracy and consistency. It integrates a new lane line detection algorithm with other lane marking detectors to effectively identify the correct lane line markings. It also fits multiple road models to improve accuracy. An effective stereo 3D reconstruction method is proposed to estimate vehicle localization. The estimation consistency is further guaranteed by a new particle filter framework, which takes vehicle dynamics into account. Experiment results based on image sequences taken under different visual conditions showed that the proposed system can identify the lane line markings with 98.6% accuracy. The maximum estimation error of the vehicle distance to lane lines is 16 cm in daytime and 26 cm at night, and the maximum estimation error of its moving direction with respect to the road tangent is 0.06 rad in daytime and 0.12 rad at night. Due to its high accuracy and consistency, the proposed system can be implemented in autonomous driving vehicles as a practical solution to vehicle lane-level localization.

摘要

车辆车道级定位是自动驾驶的一项基础技术。为了实现精确和一致的性能,一种常见的方法是使用激光雷达技术。然而,它的成本高,计算量大,因此在许多情况下并不实用。本文提出了一种立体视觉系统,它成本低,但也能够实现高精度和一致性。它将一种新的车道线检测算法与其他车道标记检测器集成在一起,以有效地识别正确的车道线标记。它还拟合了多个道路模型以提高精度。提出了一种有效的立体 3D 重建方法来估计车辆定位。新的粒子滤波框架进一步保证了估计的一致性,该框架考虑了车辆动力学。基于不同视觉条件下拍摄的图像序列的实验结果表明,所提出的系统可以以 98.6%的准确率识别车道线标记。车辆距离车道线的最大估计误差为白天 16 厘米,夜间 26 厘米,车辆相对于道路切线的移动方向的最大估计误差为白天 0.06 弧度,夜间 0.12 弧度。由于其高精度和一致性,所提出的系统可以作为自动驾驶车辆中车辆车道级定位的实用解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验