Lee Byung-Hyun, Song Jong-Hwa, Im Jun-Hyuck, Im Sung-Hyuck, Heo Moon-Beom, Jee Gyu-In
Electronics Engineering, Konkuk University, Seoul 143-701, Korea.
Satellite Navigation Team, Korea Aerospace Research Institute (KARI), Daejeon 305-806, Korea.
Sensors (Basel). 2015 Aug 21;15(8):20779-98. doi: 10.3390/s150820779.
Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level.
自动驾驶车辆需要高度可靠的导航能力。例如,车道跟踪方法无法应用于没有车道的十字路口,而且由于典型的车道检测是使用直线模型进行的,在弯道部分估计横向距离时,由于模型不匹配可能会出现误差。因此,本文提出了一种定位方法,该方法基于具有弯道模型的车道检测方法、停车线检测和曲线匹配来使用GPS/DR误差估计,以提高在航点跟踪过程中的性能。使用该方法的优点是可以为自动驾驶车辆在通过十字路口、急转弯路段以及直道后的弯道部分提供位置信息。该方法在一个实验场地应用于自动驾驶车辆以评估其性能,结果表明定位精度达到了亚米级。