Suppr超能文献

具有可见光和近红外光谱集成的视觉融合系统的合理设计,以改善环境感知。

Rational design of a vision fusion system with visible and near-infrared spectral integration for improved environmental perception.

作者信息

Zhang Sen, Xiao Pingdan, Hong Qinghui, Tang Lin, Xie Zhengdao, He Rui, Jiang Bei, Hong Xitong, Li Xinjie, Zhu Haodi, Hong Ruohao, Liu Chang, Liu Xingqiang, Lv Yawei, Chai Yang, Liao Lei, Zou Xuming

机构信息

Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China.

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.

出版信息

Natl Sci Rev. 2025 May 21;12(7):nwaf204. doi: 10.1093/nsr/nwaf204. eCollection 2025 Jul.

Abstract

With the rapid advancements in autonomous driving, pure vision-based solutions have garnered significant attention. However, existing vision sensors are limited by their specific spectral operating ranges and the complexity of processing hybrid optical/electrical signals. In this study, we present a fully circuit-emulated vision system that employs a vision fusion solution for autonomous driving, integrating image sensing, fusion, edge extraction, and decision-making functionalities. This system utilizes vision sensors featuring an AlO/two-dimensional Ruddlesden-Popper perovskite (2D PVK) heterostructural dielectric and MoS/black phosphorus (BP)/MoS heterostructural channel, which exhibits persistent nonvolatility and fully light-tunable positive and negative photoresponses when exposed to 1064 nm and 532 nm light, respectively. Notably, when combined with edge extraction circuit design, our vision system achieves all-day visual perception with a 99.0% recognition accuracy for driving scenario information. The integration of the fully circuit-emulated vision system with the vision fusion solution enables a more comprehensive and accurate representation of the driving environment.

摘要

随着自动驾驶技术的飞速发展,基于纯视觉的解决方案受到了广泛关注。然而,现有的视觉传感器受到其特定光谱工作范围以及处理混合光/电信号复杂性的限制。在本研究中,我们提出了一种全电路仿真视觉系统,该系统采用用于自动驾驶的视觉融合解决方案,集成了图像传感、融合、边缘提取和决策功能。该系统利用具有AlO/二维Ruddlesden-Popper钙钛矿(2D PVK)异质结构电介质和MoS/黑磷(BP)/MoS异质结构通道的视觉传感器,当分别暴露于1064 nm和532 nm光时,该通道表现出持久的非挥发性以及完全光可调的正、负光响应。值得注意的是,当与边缘提取电路设计相结合时,我们的视觉系统实现了全天候视觉感知,对驾驶场景信息的识别准确率达到99.0%。全电路仿真视觉系统与视觉融合解决方案的集成能够更全面、准确地呈现驾驶环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c691/12168784/833abad76d13/nwaf204fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验