Suppr超能文献

构建用于鲁棒子空间学习和子空间聚类的 L2-Graph。

Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering.

出版信息

IEEE Trans Cybern. 2017 Apr;47(4):1053-1066. doi: 10.1109/TCYB.2016.2536752. Epub 2016 Mar 15.

Abstract

Under the framework of graph-based learning, the key to robust subspace clustering and subspace learning is to obtain a good similarity graph that eliminates the effects of errors and retains only connections between the data points from the same subspace (i.e., intrasubspace data points). Recent works achieve good performance by modeling errors into their objective functions to remove the errors from the inputs. However, these approaches face the limitations that the structure of errors should be known prior and a complex convex problem must be solved. In this paper, we present a novel method to eliminate the effects of the errors from the projection space (representation) rather than from the input space. We first prove that l -, l -, l -, and nuclear-norm-based linear projection spaces share the property of intrasubspace projection dominance, i.e., the coefficients over intrasubspace data points are larger than those over intersubspace data points. Based on this property, we introduce a method to construct a sparse similarity graph, called L2-graph. The subspace clustering and subspace learning algorithms are developed upon L2-graph. We conduct comprehensive experiment on subspace learning, image clustering, and motion segmentation and consider several quantitative benchmarks classification/clustering accuracy, normalized mutual information, and running time. Results show that L2-graph outperforms many state-of-the-art methods in our experiments, including L1-graph, low rank representation (LRR), and latent LRR, least square regression, sparse subspace clustering, and locally linear representation.

摘要

在基于图的学习框架下,稳健子空间聚类和子空间学习的关键是获得一个良好的相似性图,该图能够消除误差的影响,只保留来自同一子空间(即子空间内数据点)的数据点之间的连接。最近的工作通过将误差建模到目标函数中,从而从输入中消除误差,取得了很好的性能。然而,这些方法面临着这样的局限性,即误差的结构应该事先知道,并且必须解决一个复杂的凸问题。在本文中,我们提出了一种从投影空间(表示)而不是从输入空间中消除误差影响的新方法。我们首先证明基于 l1 -, l2 -, l∞ -, 和核范数的线性投影空间具有子空间投影优势的性质,即子空间内数据点的系数大于子空间间数据点的系数。基于这一性质,我们引入了一种构造稀疏相似性图的方法,称为 L2-图。子空间聚类和子空间学习算法都是在 L2-图的基础上开发的。我们对子空间学习、图像聚类和运动分割进行了全面的实验,并考虑了几个定量基准分类/聚类精度、归一化互信息和运行时间。结果表明,在我们的实验中,L2-图优于许多最先进的方法,包括 L1-图、低秩表示(LRR)和潜在 LRR、最小二乘回归、稀疏子空间聚类和局部线性表示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验