Suppr超能文献

噪声不敏感判别子空间模糊聚类

Noise-insensitive discriminative subspace fuzzy clustering.

作者信息

Zhi Xiaobin, Yu Tongjun, Bi Longtao, Li Yalan

机构信息

School of Science, Xi' an University of Posts and Telecommunications, Xi'an, People's Republic of China.

School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an, People's Republic of China.

出版信息

J Appl Stat. 2021 Jun 16;50(3):659-674. doi: 10.1080/02664763.2021.1937583. eCollection 2023.

Abstract

Discriminative subspace clustering (DSC) can make full use of linear discriminant analysis (LDA) to reduce the dimension of data and achieve effective clustering high-dimension data by clustering low-dimension data in discriminant subspace. However, most existing DSC algorithms do not consider the noise and outliers that may be contained in data sets, and when they are applied to the data sets with noise or outliers, and they often obtain poor performance due to the influence of noise and outliers. In this paper, we address the problem of the sensitivity of DSC to noise and outlier. Replacing the Euclidean distance in the objective function of LDA by an exponential non-Euclidean distance, we first develop a noise-insensitive LDA (NILDA) algorithm. Then, combining the proposed NILDA and a noise-insensitive fuzzy clustering algorithm: AFKM, we propose a noise-insensitive discriminative subspace fuzzy clustering (NIDSFC) algorithm. Experiments on some benchmark data sets show the effectiveness of the proposed NIDSFC algorithm.

摘要

判别子空间聚类(DSC)可以充分利用线性判别分析(LDA)来降低数据维度,并通过在判别子空间中对低维数据进行聚类来实现对高维数据的有效聚类。然而,大多数现有的DSC算法没有考虑数据集中可能包含的噪声和离群值,当它们应用于带有噪声或离群值的数据集时,由于噪声和离群值的影响,它们往往会获得较差的性能。在本文中,我们解决了DSC对噪声和离群值敏感的问题。通过用指数非欧几里得距离替换LDA目标函数中的欧几里得距离,我们首先开发了一种对噪声不敏感的LDA(NILDA)算法。然后,将所提出的NILDA与一种对噪声不敏感的模糊聚类算法:AFKM相结合,我们提出了一种对噪声不敏感的判别子空间模糊聚类(NIDSFC)算法。在一些基准数据集上的实验表明了所提出的NIDSFC算法的有效性。

相似文献

1
Noise-insensitive discriminative subspace fuzzy clustering.噪声不敏感判别子空间模糊聚类
J Appl Stat. 2021 Jun 16;50(3):659-674. doi: 10.1080/02664763.2021.1937583. eCollection 2023.
3
Discriminative Transformation Learning for Fuzzy Sparse Subspace Clustering.用于模糊稀疏子空间聚类的判别式变换学习。
IEEE Trans Cybern. 2018 Aug;48(8):2218-2231. doi: 10.1109/TCYB.2017.2729542. Epub 2017 Aug 2.
4
Multiple Kernel Clustering With Neighbor-Kernel Subspace Segmentation.基于邻域核子空间分割的多核聚类
IEEE Trans Neural Netw Learn Syst. 2020 Apr;31(4):1351-1362. doi: 10.1109/TNNLS.2019.2919900. Epub 2019 Jun 28.
6
Fuzzy Sparse Subspace Clustering for Infrared Image Segmentation.基于模糊稀疏子空间聚类的红外图像分割。
IEEE Trans Image Process. 2023;32:2132-2146. doi: 10.1109/TIP.2023.3263102. Epub 2023 Apr 6.
8
Effective FCM noise clustering algorithms in medical images.医学图像中有效的 FCM 噪声聚类算法。
Comput Biol Med. 2013 Feb;43(2):73-83. doi: 10.1016/j.compbiomed.2012.10.002. Epub 2012 Dec 6.
10
Learning Robust and Discriminative Subspace With Low-Rank Constraints.学习具有低秩约束的鲁棒和判别子空间。
IEEE Trans Neural Netw Learn Syst. 2016 Nov;27(11):2160-2173. doi: 10.1109/TNNLS.2015.2464090. Epub 2015 Aug 31.

引用本文的文献

本文引用的文献

1
Adaptive Graph Auto-Encoder for General Data Clustering.用于通用数据聚类的自适应图自动编码器
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9725-9732. doi: 10.1109/TPAMI.2021.3125687. Epub 2022 Nov 7.
2
Deep Clustering With Sample-Assignment Invariance Prior.具有样本分配不变性先验的深度聚类
IEEE Trans Neural Netw Learn Syst. 2020 Nov;31(11):4857-4868. doi: 10.1109/TNNLS.2019.2958324. Epub 2020 Oct 30.
3
Structured AutoEncoders for Subspace Clustering.用于子空间聚类的结构化自动编码器
IEEE Trans Image Process. 2018 Jun 18. doi: 10.1109/TIP.2018.2848470.
5
Discriminative clustering via extreme learning machine.基于极端学习机的判别聚类。
Neural Netw. 2015 Oct;70:1-8. doi: 10.1016/j.neunet.2015.06.002. Epub 2015 Jun 19.
6
Discriminative embedded clustering: a framework for grouping high-dimensional data.判别式嵌入聚类:一种用于高维数据分组的框架。
IEEE Trans Neural Netw Learn Syst. 2015 Jun;26(6):1287-99. doi: 10.1109/TNNLS.2014.2337335. Epub 2014 Jul 29.
7
Sparse subspace clustering: algorithm, theory, and applications.稀疏子空间聚类:算法、理论与应用。
IEEE Trans Pattern Anal Mach Intell. 2013 Nov;35(11):2765-81. doi: 10.1109/TPAMI.2013.57.
9
A two-stage linear discriminant analysis via QR-decomposition.一种通过QR分解的两阶段线性判别分析。
IEEE Trans Pattern Anal Mach Intell. 2005 Jun;27(6):929-41. doi: 10.1109/TPAMI.2005.110.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验