Zhi Xiaobin, Yu Tongjun, Bi Longtao, Li Yalan
School of Science, Xi' an University of Posts and Telecommunications, Xi'an, People's Republic of China.
School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an, People's Republic of China.
J Appl Stat. 2021 Jun 16;50(3):659-674. doi: 10.1080/02664763.2021.1937583. eCollection 2023.
Discriminative subspace clustering (DSC) can make full use of linear discriminant analysis (LDA) to reduce the dimension of data and achieve effective clustering high-dimension data by clustering low-dimension data in discriminant subspace. However, most existing DSC algorithms do not consider the noise and outliers that may be contained in data sets, and when they are applied to the data sets with noise or outliers, and they often obtain poor performance due to the influence of noise and outliers. In this paper, we address the problem of the sensitivity of DSC to noise and outlier. Replacing the Euclidean distance in the objective function of LDA by an exponential non-Euclidean distance, we first develop a noise-insensitive LDA (NILDA) algorithm. Then, combining the proposed NILDA and a noise-insensitive fuzzy clustering algorithm: AFKM, we propose a noise-insensitive discriminative subspace fuzzy clustering (NIDSFC) algorithm. Experiments on some benchmark data sets show the effectiveness of the proposed NIDSFC algorithm.
判别子空间聚类(DSC)可以充分利用线性判别分析(LDA)来降低数据维度,并通过在判别子空间中对低维数据进行聚类来实现对高维数据的有效聚类。然而,大多数现有的DSC算法没有考虑数据集中可能包含的噪声和离群值,当它们应用于带有噪声或离群值的数据集时,由于噪声和离群值的影响,它们往往会获得较差的性能。在本文中,我们解决了DSC对噪声和离群值敏感的问题。通过用指数非欧几里得距离替换LDA目标函数中的欧几里得距离,我们首先开发了一种对噪声不敏感的LDA(NILDA)算法。然后,将所提出的NILDA与一种对噪声不敏感的模糊聚类算法:AFKM相结合,我们提出了一种对噪声不敏感的判别子空间模糊聚类(NIDSFC)算法。在一些基准数据集上的实验表明了所提出的NIDSFC算法的有效性。