Suppr超能文献

健康主动脉的区域和方向顺应性:猪模型的离体研究。

Regional and directional compliance of the healthy aorta: an ex vivo study in a porcine model.

作者信息

Krüger Tobias, Veseli Kujtim, Lausberg Henning, Vöhringer Luise, Schneider Wilke, Schlensak Christian

机构信息

Department of Thoracic and Cardiovascular Surgery, University Medical Center Tübingen, Tübingen, Germany

Department of Thoracic and Cardiovascular Surgery, University Medical Center Tübingen, Tübingen, Germany.

出版信息

Interact Cardiovasc Thorac Surg. 2016 Jul;23(1):104-11. doi: 10.1093/icvts/ivw053. Epub 2016 Mar 18.

Abstract

OBJECTIVES

To gain differential knowledge about the physiological compliance and wall strength of the different regions of the aorta, including the ascending aorta, arch and descending aorta in both the circumferential and longitudinal directions, and to generate a hypothesis on the pathophysiological mechanisms that lead to Type A aortic dissection.

METHODS

Fresh tissue specimens from 22 ex vivo porcine aortas were analysed on a tensile tester. Regional and directional compliance, failure stress and failure strain were recorded.

RESULTS

Aortic compliance appeared as a linear function of the natural logarithm (ln) of wall stress. Compliance significantly decreased along the length of the aorta. In the ascending aorta, longitudinal compliance significantly (P = 0.003) exceeded circumferential compliance, and the outer curvature was more compliant than the inner curvature (P = 0.03). In the descending aorta, this relationship is reversed: the circumferential compliance exceeded the longitudinal compliance, and the outer aspect was more compliant (P = 0.003). The median circumferential failure stress of all aortic segments was in the range of 2000-2750 kPa, whereas the longitudinal failure stress in the ascending aorta and the arch had values of 750-1000 kPa, which were significantly lower (P < 0.05). Surprisingly, the longitudinal failure stress of the inner aspect of the descending aorta was extraordinarily high (2000 kPa). Failure strain, similar to compliance, was highest in the ascending aorta and decreased along the aorta.

CONCLUSION

The aorta appears to be a complex organ with distinct regional and directional differences in compliance and wall strength that is designed to effectively absorb the kinetic energy of cardiac systole and to cushion the momentum of systolic impact. Under normotensive conditions and a preconditioned physiological morphology, the aortic wall works in the steep part of the logarithmic strain-stress function; under hypertensive conditions and pathological morphology, the wall reacts in an non-compliant manner. The high longitudinal compliance and low failure stress of the ascending aorta and subsequent pathological changes may be the main determinants of the recurrent patho-anatomy of Type A aortic dissection.

摘要

目的

获取关于主动脉不同区域(包括升主动脉、主动脉弓和降主动脉)在周向和纵向方向上的生理顺应性和壁强度的差异知识,并就导致A型主动脉夹层的病理生理机制提出假设。

方法

在拉伸试验机上分析来自22个离体猪主动脉的新鲜组织标本。记录区域和方向顺应性、破坏应力和破坏应变。

结果

主动脉顺应性表现为壁应力自然对数(ln)的线性函数。顺应性沿主动脉长度显著降低。在升主动脉中,纵向顺应性显著(P = 0.003)超过周向顺应性,且外曲率比内曲率更具顺应性(P = 0.03)。在降主动脉中,这种关系相反:周向顺应性超过纵向顺应性,且外侧更具顺应性(P = 0.003)。所有主动脉段的周向破坏应力中位数在2000 - 2750 kPa范围内,但升主动脉和主动脉弓的纵向破坏应力值为750 - 1000 kPa,显著更低(P < 0.05)。令人惊讶的是,降主动脉内侧的纵向破坏应力异常高(2000 kPa)。与顺应性相似,破坏应变在升主动脉中最高,并沿主动脉降低。

结论

主动脉似乎是一个复杂的器官,在顺应性和壁强度方面具有明显的区域和方向差异,旨在有效吸收心脏收缩期的动能并缓冲收缩期冲击的动量。在正常血压条件和预先设定的生理形态下,主动脉壁在对数应变 - 应力函数的陡峭部分起作用;在高血压条件和病理形态下,壁以不顺应的方式反应。升主动脉的高纵向顺应性和低破坏应力以及随后的病理变化可能是A型主动脉夹层反复出现的病理解剖结构的主要决定因素。

相似文献

1
Regional and directional compliance of the healthy aorta: an ex vivo study in a porcine model.
Interact Cardiovasc Thorac Surg. 2016 Jul;23(1):104-11. doi: 10.1093/icvts/ivw053. Epub 2016 Mar 18.
2
Elastic properties of the young aorta: ex vivo perfusion experiments in a porcine model.
Eur J Cardiothorac Surg. 2015 Aug;48(2):221-7. doi: 10.1093/ejcts/ezu438. Epub 2014 Nov 13.
3
Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta.
J Thorac Cardiovasc Surg. 2012 Feb;143(2):460-7. doi: 10.1016/j.jtcvs.2011.07.058. Epub 2011 Aug 25.
4
The role of radial elastic properties in the development of aortic dissections.
J Vasc Surg. 1999 Apr;29(4):703-10. doi: 10.1016/s0741-5214(99)70317-4.
5
Immediate Impact of Prosthetic Graft Replacement of the Ascending Aorta on Circumferential Strain in the Descending Aorta.
Eur J Vasc Endovasc Surg. 2019 Oct;58(4):521-528. doi: 10.1016/j.ejvs.2019.05.003. Epub 2019 Aug 21.
7
Regional variation in biomechanical properties of ascending thoracic aortic aneurysms.
Eur J Cardiothorac Surg. 2022 Aug 3;62(3). doi: 10.1093/ejcts/ezac392.
8
Regional and directional variations in the mechanical properties of ascending thoracic aortic aneurysms.
Med Eng Phys. 2009 Jan;31(1):1-9. doi: 10.1016/j.medengphy.2008.03.002. Epub 2008 Apr 22.
9
The functional limits of the aneurysmal aortic root. A unique pressure testing apparatus.
J Cardiothorac Surg. 2020 Sep 17;15(1):259. doi: 10.1186/s13019-020-01288-8.

引用本文的文献

1
Aortic stretch and recoil create wave-pumping effect: the second heart in the systemic circulation.
J R Soc Interface. 2025 Feb;22(223):20240887. doi: 10.1098/rsif.2024.0887. Epub 2025 Feb 19.
2
The correlation study between the length and angle of ascending aortic and the incidence risk of acute type A aortic dissection.
Front Cardiovasc Med. 2024 Mar 25;11:1375601. doi: 10.3389/fcvm.2024.1375601. eCollection 2024.
4
Left ventricular remodeling following aortic root and ascending aneurysm repair.
Front Cardiovasc Med. 2022 Oct 25;9:944786. doi: 10.3389/fcvm.2022.944786. eCollection 2022.
5
Valsalva maneuvers during computed tomography (CT) can demonstrate seemingly worrisome but ultimately transient aortoiliac narrowing.
Radiol Case Rep. 2022 Jun 17;17(9):2927-2929. doi: 10.1016/j.radcr.2022.05.048. eCollection 2022 Sep.
7
Quantification of the regional bioarchitecture in the human aorta.
J Anat. 2020 Jan;236(1):142-155. doi: 10.1111/joa.13076. Epub 2019 Sep 11.
8
[Experimental study on mechanical properties of the ventral and the dorsal tissues of porcine descending aorta].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Aug 25;36(4):596-603. doi: 10.7507/1001-5515.201905005.

本文引用的文献

2
Elastic properties of the young aorta: ex vivo perfusion experiments in a porcine model.
Eur J Cardiothorac Surg. 2015 Aug;48(2):221-7. doi: 10.1093/ejcts/ezu438. Epub 2014 Nov 13.
4
How does the ascending aorta geometry change when it dissects?
J Am Coll Cardiol. 2014 Apr 8;63(13):1311-1319. doi: 10.1016/j.jacc.2013.12.028. Epub 2014 Feb 5.
5
Effect of layer heterogeneity on the biomechanical properties of ascending thoracic aortic aneurysms.
Med Biol Eng Comput. 2012 Dec;50(12):1227-37. doi: 10.1007/s11517-012-0949-x. Epub 2012 Aug 25.
6
Significant differences in the material properties between aged human and porcine aortic tissues.
Eur J Cardiothorac Surg. 2011 Jul;40(1):28-34. doi: 10.1016/j.ejcts.2010.08.056. Epub 2010 Dec 21.
7
Aortic dimensions and stiffness in normal adults.
JACC Cardiovasc Imaging. 2008 Nov;1(6):749-51. doi: 10.1016/j.jcmg.2008.08.002.
8
Age-associated elongation of the ascending aorta in adults.
JACC Cardiovasc Imaging. 2008 Nov;1(6):739-48. doi: 10.1016/j.jcmg.2008.06.010.
9
Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes.
J Vasc Surg. 2009 Apr;49(4):1029-36. doi: 10.1016/j.jvs.2008.11.056.
10
Ascending thoracic aortic aneurysms are associated with compositional remodeling and vessel stiffening but not weakening in age-matched subjects.
J Thorac Cardiovasc Surg. 2009 Jan;137(1):101-9. doi: 10.1016/j.jtcvs.2008.07.023. Epub 2008 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验