Suppr超能文献

胶质母细胞瘤中癌症干细胞对瓦伯格效应的分子重编程:从一个旧概念中挖掘出的新靶点。

Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept.

作者信息

Yuen Carlen A, Asuthkar Swapna, Guda Maheedhara R, Tsung Andrew J, Velpula Kiran K

机构信息

Departments of Cancer Biology & Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.

Department of Neurosurgery, University of Illinois College of Medicine, Peoria, IL 61605, USA.

出版信息

CNS Oncol. 2016;5(2):101-8. doi: 10.2217/cns-2015-0006. Epub 2016 Mar 21.

Abstract

Prior targeted treatment for glioblastoma multiforme (GBM) with anti-angiogenic agents, such as bevacizumab, has been met with limited success potentially owing to GBM tumor's ability to develop a hypoxia-induced escape mechanism--a glycolytic switch from oxidative phosphorylation to glycolysis, an old concept known as the Warburg effect. New studies points to a subpopulation of cells as a source for treatment-resistance, cancer stem cells (CSCs). Taken together, the induction of the Warburg effect leads to the promotion of CSC self-renewal and undifferentiation. In response to hypoxia, hypoxia-inducible transcription factor is upregulated and is the central driver in setting off the cascade of events in CSC metabolic reprogramming. Hypoxia-inducible transcription factor upregulates GLUT1 to increase glucose uptake into the cell, upregulates HK2 and PK during glycolysis, upregulates LDHA in the termination of glycolysis, and downregulates PDH to redirect energy production toward glycolysis. This review aims to unite these old and new concepts simultaneously and examine potential enzyme targets driven by hypoxia in the glycolytic phenotype of CSCs to reverse the metabolic shift induced by the Warburg effect.

摘要

先前使用抗血管生成药物(如贝伐单抗)对多形性胶质母细胞瘤(GBM)进行靶向治疗的效果有限,这可能是由于GBM肿瘤能够形成一种缺氧诱导的逃逸机制——从氧化磷酸化到糖酵解的糖酵解转换,这是一个被称为瓦伯格效应的古老概念。新的研究指出,细胞亚群即癌症干细胞(CSCs)是治疗耐药性的来源。综上所述,瓦伯格效应的诱导导致了CSC自我更新和未分化的促进。在缺氧反应中,缺氧诱导转录因子被上调,并且是引发CSC代谢重编程中一系列事件的核心驱动因素。缺氧诱导转录因子上调GLUT1以增加细胞对葡萄糖的摄取,在糖酵解过程中上调HK2和PK,在糖酵解终止时上调LDHA,并下调PDH以将能量产生重定向至糖酵解。本综述旨在同时整合这些新旧概念,并研究缺氧在CSC糖酵解表型中驱动的潜在酶靶点,以逆转由瓦伯格效应诱导的代谢转变。

相似文献

2
Hypoxia-Mediated Mechanisms Associated with Antiangiogenic Treatment Resistance in Glioblastomas.
Am J Pathol. 2017 May;187(5):940-953. doi: 10.1016/j.ajpath.2017.01.010. Epub 2017 Mar 9.
3
Comprehensive analysis of glycolytic enzymes as therapeutic targets in the treatment of glioblastoma.
PLoS One. 2015 May 1;10(5):e0123544. doi: 10.1371/journal.pone.0123544. eCollection 2015.
4
Uncoupling Warburg effect and stemness in CD133 cancer stem cells from Saos-2 (osteosarcoma) cell line under hypoxia.
Mol Biol Rep. 2018 Dec;45(6):1653-1662. doi: 10.1007/s11033-018-4309-2. Epub 2018 Aug 20.
5
Combined targeting of PDK1 and EGFR triggers regression of glioblastoma by reversing the Warburg effect.
Cancer Res. 2013 Dec 15;73(24):7277-89. doi: 10.1158/0008-5472.CAN-13-1868. Epub 2013 Oct 22.
6
Hypoxia upregulates HIG2 expression and contributes to bevacizumab resistance in glioblastoma.
Oncotarget. 2016 Jul 26;7(30):47808-47820. doi: 10.18632/oncotarget.10029.
9
Suppression of oxidative phosphorylation confers resistance against bevacizumab in experimental glioma.
J Neurochem. 2018 Feb;144(4):421-430. doi: 10.1111/jnc.14264. Epub 2018 Jan 8.
10
Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways.
Int J Cancer. 2017 Jan 1;140(1):10-22. doi: 10.1002/ijc.30259. Epub 2016 Jul 20.

引用本文的文献

1
Glioblastoma: From Pathophysiology to Novel Therapeutic Approaches.
Biomedicines. 2025 Aug 12;13(8):1963. doi: 10.3390/biomedicines13081963.
2
The Metabolic Landscape of Cancer Stem Cells: Insights and Implications for Therapy.
Cells. 2025 May 15;14(10):717. doi: 10.3390/cells14100717.
3
Plasma extracellular vesicles from recurrent GBMs carrying LDHA to activate glioblastoma stemness by enhancing glycolysis.
Theranostics. 2025 Feb 26;15(8):3655-3672. doi: 10.7150/thno.102014. eCollection 2025.
4
CADD-based discovery of novel oligomeric modulators of PKM2 with antitumor activity in aggressive human glioblastoma models.
Heliyon. 2025 Jan 24;11(3):e42238. doi: 10.1016/j.heliyon.2025.e42238. eCollection 2025 Feb 15.
5
Metabolic Risk Factors and Survival in Patients with Glioblastoma.
Cancers (Basel). 2024 Oct 30;16(21):3666. doi: 10.3390/cancers16213666.
6
Metabolism: an important player in glioma survival and development.
Discov Oncol. 2024 Oct 22;15(1):577. doi: 10.1007/s12672-024-01402-5.
7
10
Role of Oxidative Stress in Metabolic Reprogramming of Brain Cancer.
Cancers (Basel). 2023 Oct 10;15(20):4920. doi: 10.3390/cancers15204920.

本文引用的文献

1
The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor.
Brain Pathol. 2016 Jan;26(1):3-17. doi: 10.1111/bpa.12299. Epub 2015 Sep 17.
2
Sensitization of Glioblastoma Cells to Irradiation by Modulating the Glucose Metabolism.
Mol Cancer Ther. 2015 Aug;14(8):1794-804. doi: 10.1158/1535-7163.MCT-15-0247. Epub 2015 Jun 10.
3
Comprehensive analysis of glycolytic enzymes as therapeutic targets in the treatment of glioblastoma.
PLoS One. 2015 May 1;10(5):e0123544. doi: 10.1371/journal.pone.0123544. eCollection 2015.
5
Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target.
Carcinogenesis. 2015 Feb;36(2):177-85. doi: 10.1093/carcin/bgu243. Epub 2014 Dec 11.
7
A randomized trial of bevacizumab for newly diagnosed glioblastoma.
N Engl J Med. 2014 Feb 20;370(8):699-708. doi: 10.1056/NEJMoa1308573.
8
The antineoplastic effect of carnosine is accompanied by induction of PDK4 and can be mimicked by L-histidine.
Amino Acids. 2014 Apr;46(4):1009-19. doi: 10.1007/s00726-014-1664-8. Epub 2014 Jan 8.
9
Lactate dehydrogenase A silencing in IDH mutant gliomas.
Neuro Oncol. 2014 May;16(5):686-95. doi: 10.1093/neuonc/not243. Epub 2013 Dec 22.
10
PKM2 regulates chromosome segregation and mitosis progression of tumor cells.
Mol Cell. 2014 Jan 9;53(1):75-87. doi: 10.1016/j.molcel.2013.11.001. Epub 2013 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验