Qiu Hu, Girdhar Anuj, Schulten Klaus, Leburton Jean-Pierre
Beckman Institute for Advanced Science and Technology, ‡Department of Physics, and §Department of Electrical and Computer Engineering, University of Illinois , Urbana, Illinois 61801, United States.
ACS Nano. 2016 Apr 26;10(4):4482-8. doi: 10.1021/acsnano.6b00226. Epub 2016 Mar 30.
Nanopores offer sensors for a broad range of nanoscale materials, in particular ones of biological origin such as single- and double-stranded DNA or DNA-protein complexes. In order to increase single-molecule sensitivity, it is desirable to control biomolecule motion inside nanopores. In the present study, we investigate how in the case of a double-stranded DNA the single-molecule sensitivity can be improved through bias voltages. For this purpose we carry out molecular dynamics simulations of the DNA inside nanopores in an electrically biased metallic membrane. Stabilization of DNA, namely, a reduction in thermal fluctuations, is observed under positive bias voltages, while negative voltages bring about only negligible stabilization. For positive biases the stabilization arises from electrostatic attraction between the negatively charged DNA backbone and the positively charged pore surface. Simulations on a teardrop-shaped pore show a transverse shift of DNA position toward the sharp end of the pore under positive bias voltages, suggesting the possibility to control DNA alignment inside nanopores through geometry shaping. The present findings open a feasible and efficient route to reduce thermal noise and, in turn, enhance the signal-to-noise ratio in single-molecule nanopore sensing.
纳米孔可为多种纳米级材料提供传感器,尤其是生物源材料,如单链和双链DNA或DNA-蛋白质复合物。为了提高单分子灵敏度,需要控制纳米孔内生物分子的运动。在本研究中,我们研究了在双链DNA的情况下,如何通过偏置电压提高单分子灵敏度。为此,我们对处于电偏置金属膜中的纳米孔内的DNA进行了分子动力学模拟。在正偏置电压下观察到DNA的稳定,即热波动的减少,而负电压仅带来可忽略不计的稳定。对于正偏置,稳定是由带负电的DNA主链与带正电的孔表面之间的静电吸引引起的。对泪滴形孔的模拟表明,在正偏置电压下,DNA位置会向孔的尖锐端横向移动,这表明通过几何形状塑造来控制纳米孔内DNA排列的可能性。本研究结果开辟了一条可行且有效的途径来降低热噪声,进而提高单分子纳米孔传感中的信噪比。