Department of Chemistry, Imperial College London, London, UK.
Biochem Soc Trans. 2012 Aug;40(4):624-8. doi: 10.1042/BST20120121.
Biological cell membranes contain various types of ion channels and transmembrane pores in the 1-100 nm range, which are vital for cellular function. Individual channels can be probed electrically, as demonstrated by Neher and Sakmann in 1976 using the patch-clamp technique [Neher and Sakmann (1976) Nature 260, 799-802]. Since the 1990s, this work has inspired the use of protein or solid-state nanopores as inexpensive and ultrafast sensors for the detection of biomolecules, including DNA, RNA and proteins, but with particular focus on DNA sequencing. Solid-state nanopores in particular have the advantage that the pore size can be tailored to the analyte in question and that they can be modified using semi-conductor processing technology. This establishes solid-state nanopores as a new class of single-molecule biosensor devices, in some cases with submolecular resolution. In the present review, we discuss a few of the most important recent developments in this field and how they might be applied to studying protein-protein and protein-DNA interactions or in the context of ultra-fast DNA sequencing.
生物细胞膜在 1-100nm 范围内包含各种类型的离子通道和跨膜孔,这些通道对于细胞功能至关重要。单个通道可以通过电探测,这是 Neher 和 Sakmann 在 1976 年使用膜片钳技术证明的[Neher 和 Sakmann(1976)《自然》260,799-802]。自 20 世纪 90 年代以来,这项工作激发了人们使用蛋白质或固态纳米孔作为廉价和超快的生物分子传感器,包括 DNA、RNA 和蛋白质,但其特别关注的是 DNA 测序。固态纳米孔的一个优势是可以根据分析物来调整孔径,并且可以使用半导体处理技术进行修饰。这使得固态纳米孔成为一类新的单分子生物传感器设备,在某些情况下具有亚分子分辨率。在本综述中,我们讨论了该领域的一些最重要的最新进展,以及它们如何应用于研究蛋白质-蛋白质和蛋白质-DNA 相互作用,或在超快速 DNA 测序的背景下。