Suppr超能文献

基于横向隧道电流的 DNA 核苷酸分类。

Classification of DNA nucleotides with transverse tunneling currents.

机构信息

Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark. Center for Nanostructured Graphene (CNG), DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

出版信息

Nanotechnology. 2017 Jan 6;28(1):015502. doi: 10.1088/0957-4484/28/1/015502. Epub 2016 Nov 29.

Abstract

It has been theoretically suggested and experimentally demonstrated that fast and low-cost sequencing of DNA, RNA, and peptide molecules might be achieved by passing such molecules between electrodes embedded in a nanochannel. The experimental realization of this scheme faces major challenges, however. In realistic liquid environments, typical currents in tunneling devices are of the order of picoamps. This corresponds to only six electrons per microsecond, and this number affects the integration time required to do current measurements in real experiments. This limits the speed of sequencing, though current fluctuations due to Brownian motion of the molecule average out during the required integration time. Moreover, data acquisition equipment introduces noise, and electronic filters create correlations in time-series data. We discuss how these effects must be included in the analysis of, e.g., the assignment of specific nucleobases to current signals. As the signals from different molecules overlap, unambiguous classification is impossible with a single measurement. We argue that the assignment of molecules to a signal is a standard pattern classification problem and calculation of the error rates is straightforward. The ideas presented here can be extended to other sequencing approaches of current interest.

摘要

已经有理论表明并通过实验证实,通过将 DNA、RNA 和肽分子置于纳米通道中嵌入的电极之间传递,可以实现快速且低成本的测序。然而,该方案的实验实现面临着重大挑战。在现实的液体环境中,隧道器件中的典型电流约为皮安。这相当于每微秒只有六个电子,这个数字影响了在实际实验中进行电流测量所需的积分时间。这限制了测序的速度,尽管由于分子的布朗运动,在所需的积分时间内平均化了电流波动。此外,数据采集设备会引入噪声,而电子滤波器会在时间序列数据中产生相关性。我们讨论了如何在分析中包含这些效应,例如,将特定的核碱基分配给电流信号。由于来自不同分子的信号重叠,单次测量无法进行明确的分类。我们认为,将分子分配给信号是一个标准的模式分类问题,计算错误率是很简单的。这里提出的思想可以扩展到当前其他测序方法。

相似文献

1
Classification of DNA nucleotides with transverse tunneling currents.
Nanotechnology. 2017 Jan 6;28(1):015502. doi: 10.1088/0957-4484/28/1/015502. Epub 2016 Nov 29.
2
Recognizing nucleotides by cross-tunneling currents for DNA sequencing.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011917. doi: 10.1103/PhysRevE.84.011917. Epub 2011 Jul 22.
3
Enhancement of the transverse conductance in DNA nucleotides.
J Chem Phys. 2008 Jan 28;128(4):041103. doi: 10.1063/1.2835350.
4
Fixed-gap tunnel junction for reading DNA nucleotides.
ACS Nano. 2014 Dec 23;8(12):11994-2003. doi: 10.1021/nn505356g. Epub 2014 Nov 12.
5
Identifying DNA Nucleotides via Transverse Electronic Transport in Atomically Thin Topologically Defected Graphene Electrodes.
ACS Appl Bio Mater. 2021 Feb 15;4(2):1403-1412. doi: 10.1021/acsabm.0c01309. Epub 2020 Dec 31.
6
Electronic signature of DNA nucleotides via transverse transport.
Nano Lett. 2005 Mar;5(3):421-4. doi: 10.1021/nl048289w.
7
Single-molecule electrical random resequencing of DNA and RNA.
Sci Rep. 2012;2:501. doi: 10.1038/srep00501. Epub 2012 Jul 10.
8
Electronic Transport through DNA Nucleotides in Atomically Thin Phosphorene Electrodes for Rapid DNA Sequencing.
ACS Appl Mater Interfaces. 2019 Jan 9;11(1):219-225. doi: 10.1021/acsami.8b17239. Epub 2018 Dec 21.
9
Effect of noise on DNA sequencing via transverse electronic transport.
Biophys J. 2009 Oct 7;97(7):1990-6. doi: 10.1016/j.bpj.2009.06.055.
10
DNA sequencing using electrical conductance measurements of a DNA polymerase.
Nat Nanotechnol. 2013 Jun;8(6):452-8. doi: 10.1038/nnano.2013.71. Epub 2013 May 5.

引用本文的文献

本文引用的文献

1
Electrically Tunable Quenching of DNA Fluctuations in Biased Solid-State Nanopores.
ACS Nano. 2016 Apr 26;10(4):4482-8. doi: 10.1021/acsnano.6b00226. Epub 2016 Mar 30.
2
Graphene nanodevices for DNA sequencing.
Nat Nanotechnol. 2016 Feb;11(2):127-36. doi: 10.1038/nnano.2015.307.
3
Decoding DNA, RNA and peptides with quantum tunnelling.
Nat Nanotechnol. 2016 Feb;11(2):117-26. doi: 10.1038/nnano.2015.320.
4
Intrinsic Stepwise Translocation of Stretched ssDNA in Graphene Nanopores.
Nano Lett. 2015 Dec 9;15(12):8322-30. doi: 10.1021/acs.nanolett.5b03963. Epub 2015 Nov 25.
5
Next-Generation Epigenetic Detection Technique: Identifying Methylated Cytosine Using Graphene Nanopore.
J Phys Chem Lett. 2014 Aug 7;5(15):2601-7. doi: 10.1021/jz501085e. Epub 2014 Jul 21.
6
Recent progress in atomistic simulation of electrical current DNA sequencing.
Biosens Bioelectron. 2015 Jul 15;69:186-98. doi: 10.1016/j.bios.2015.02.020. Epub 2015 Feb 11.
7
Physical model for recognition tunneling.
Nanotechnology. 2015 Feb 27;26(8):084001. doi: 10.1088/0957-4484/26/8/084001. Epub 2015 Feb 3.
8
Data analysis methods for solid-state nanopores.
Nanotechnology. 2015 Feb 27;26(8):084003. doi: 10.1088/0957-4484/26/8/084003. Epub 2015 Feb 3.
9
1/f noise in graphene nanopores.
Nanotechnology. 2015 Feb 20;26(7):074001. doi: 10.1088/0957-4484/26/7/074001. Epub 2015 Jan 28.
10
Fixed-gap tunnel junction for reading DNA nucleotides.
ACS Nano. 2014 Dec 23;8(12):11994-2003. doi: 10.1021/nn505356g. Epub 2014 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验