Suppr超能文献

仿人机器人计算镜像神经元系统中的视图不变视动处理。

View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid.

机构信息

Department of Artificial Intelligence, University of Malaya, Kuala Lumpur, Malaysia.

出版信息

PLoS One. 2016 Mar 21;11(3):e0152003. doi: 10.1371/journal.pone.0152003. eCollection 2016.

Abstract

Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.

摘要

镜像神经元是灵长类动物中发现的视动神经元,被认为对模仿学习很重要。镜像神经元是通过联想学习产生的,而新生儿观察自己的行为,这一观点得到了相当多的实证支持。自我探索被认为是一种使婴儿对自己的身体有感知观察力,并与自己进行感知交流的过程。我们假设粗糙的自我意识是社会互动的前提。然而,在与类人机器人相关的情况下,尚未涉及到镜像神经元在编码他人运动行为的视角方面的作用。在本文中,我们提出了一种基于假设的类人机器人镜像神经元系统的发展计算模型,即婴儿通过自我探索进行感觉运动联想学习来获得 MNS,自我探索能够维持早期的模仿技能。我们提出的模型的目的是考虑神经元的视图相关性,这可能是运动和视觉信息之间的联想连接的结果。在我们的实验中,一个类人机器人站在镜子前面(通过摄像头用自我图像表示),以便获得他自己的运动生成动作和他自己的视觉身体图像之间的联想关系。在学习过程中,网络首先从自我探索的角度,将每个运动表示映射到视觉表示。然后,学会将运动命令的表示与所有可能的视觉视角相关联。完整的架构通过在 DARwIn-OP 类人机器人上进行的模拟实验进行了评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/822d/4801384/2216cb58724f/pone.0152003.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验