School of Chemical Engineering, ‡Department of Veterinary Clinical Sciences, and §Purdue University Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States.
ACS Appl Mater Interfaces. 2016 Apr 6;8(13):8608-19. doi: 10.1021/acsami.6b00727. Epub 2016 Mar 28.
We envision that CaWO4 (CWO) nanocrystals have the potential for use in biomedical imaging and therapy because of the unique ways this material interacts with high-energy radiation. These applications, however, require development of nanoparticle (NP) formulations that are suitable for in vivo applications; primarily, the formulated nanoparticles should be sufficiently small, chemically and biologically inert, and stable against aggregation under physiological conditions. The present study demonstrates one such method of formulation, in which CWO nanoparticles are encapsulated in bioinert block copolymer (BCP) micelles. For this demonstration, we prepared three different CWO nanocrystal samples having different sizes (3, 10, and 70 nm in diameter) and shapes (elongated vs truncated rhombic). Depending on the specific synthesis method used, the as-synthesized CWO NPs contain different surfactant materials (citric acid or cetyltrimethylammonium bromide or a mixture of oleic acid and oleylamine) in the coating layers. Regardless of the type of surfactant, the original surfactant coating can be replaced with a new enclosure formed by BCP materials using a solvent-exchange method. Two types of BCPs have been tested: poly(ethylene glycol-block-n-butyl acrylate) (PEG-PnBA) and poly(ethylene glycol-block-D,L-lactic acid) (PEG-PLA). Both BCPs are able to produce fully PEGylated CWO NPs that are stable against aggregation under physiological salt conditions for very long periods of time (at least three months). The optical and radio luminescence properties of both BCP-encapsulated and surfactant-coated CWO NPs were extensively characterized. The study confirms that the BCP coating structure does not influence the luminescence properties of CWO NPs.
我们设想,由于 CaWO4(CWO)纳米晶体与高能辐射相互作用的独特方式,它们有可能用于生物医学成像和治疗。然而,这些应用需要开发适用于体内应用的纳米颗粒(NP)制剂;主要是,所配制的纳米颗粒应该足够小、化学和生物惰性,并且在生理条件下稳定,不易聚集。本研究展示了一种这样的制剂方法,其中 CWO 纳米晶体被封装在生物惰性嵌段共聚物(BCP)胶束中。为此演示,我们制备了三种具有不同尺寸(直径为 3、10 和 70nm)和形状(拉长的与截短的菱形)的不同 CWO 纳米晶体样品。根据使用的特定合成方法,合成的 CWO NPs 在涂层中含有不同的表面活性剂材料(柠檬酸或十六烷基三甲基溴化铵或油酸和油胺的混合物)。无论表面活性剂的类型如何,原始表面活性剂涂层都可以通过溶剂交换方法用 BCP 材料形成的新外壳取代。已经测试了两种类型的 BCP:聚(乙二醇嵌段-正丁基丙烯酸酯)(PEG-PnBA)和聚(乙二醇嵌段-D,L-乳酸)(PEG-PLA)。两种 BCP 都能够生成完全 PEG 化的 CWO NPs,在生理盐条件下非常长时间(至少三个月)稳定,不易聚集。对 BCP 包封和表面活性剂涂覆的 CWO NPs 的光学和放射性发光性质进行了广泛的表征。该研究证实 BCP 涂层结构不会影响 CWO NPs 的发光性质。
ACS Appl Mater Interfaces. 2016-3-28
J Control Release. 2019-4-23
ACS Appl Mater Interfaces. 2012-4-3
Materials (Basel). 2023-1-10
J Phys Chem Lett. 2012-6-21
Colloids Surf B Biointerfaces. 2013-5-16
Chem Soc Rev. 2013-6-21
ACS Appl Mater Interfaces. 2012-4-3
Dalton Trans. 2011-8-30
ACS Nano. 2011-3-23