Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Purdue University Center of Cancer Research, West Lafayette, Indiana 47907, United States.
Mol Pharm. 2022 Aug 1;19(8):2776-2794. doi: 10.1021/acs.molpharmaceut.2c00148. Epub 2022 Jul 14.
For many locally advanced tumors, the chemotherapy-radiotherapy (CT-RT) combination ("chemoradiation") is currently the standard of care. Intratumoral (IT) CT-based chemoradiation has the potential to overcome the limitations of conventional systemic CT-RT (side effects). For maximizing the benefits of IT CT-RT, our laboratory has previously developed a radiation-controlled drug release formulation, in which anticancer drug paclitaxel (PTX) and radioluminescent CaWO (CWO) nanoparticles (NPs) are co-encapsulated with poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) block copolymers ("PEG-PLA/CWO/PTX NPs"). These PEG-PLA/CWO/PTX NPs enable radiation-controlled release of PTX and are capable of producing sustained therapeutic effects lasting for at least one month following a single IT injection. The present article focuses on discussing our recent finding about the effect of the stereochemical structure of PTX on the efficacy of this PEG-PLA/CWO/PTX NP formulation. Stereochemical differences in two different PTX compounds ("PTX-S" from Samyang Biopharmaceuticals and "PTX-B" from Biotang) were characterized by 2D heteronuclear/homonuclear NMR, Raman spectroscopy, and circular dichroism measurements. The difference in PTX stereochemistry was found to significantly influence their water solubility (WS); PTX-S (WS ≈ 4.69 μg/mL) is about 19 times more water soluble than PTX-B (WS ≈ 0.25 μg/mL). The two PTX compounds showed similar cancer cell-killing performances when used as free drugs. However, the subtle stereochemical difference significantly influenced their X-ray-triggered release kinetics from the PEG-PLA/CWO/PTX NPs; the more water-soluble PTX-S was released faster than the less water-soluble PTX-B. This difference was manifested in the IT pharmacokinetics and eventually in the survival percentages of test animals (mice) treated with PEG-PLA/CWO/PTX NPs + X-rays in an human tumor xenograft study; at short times (<1 month), concurrent PEG-PLA/CWO/PTX-S NPs produced a greater tumor-suppression effect, whereas PEG-PLA/CWO/PTX-B NPs had a longer-lasting radio-sensitizing effect. This study demonstrates the importance of the stereochemistry of a drug in a therapy based on a controlled release formulation.
对于许多局部晚期肿瘤,化疗-放疗(CT-RT)联合治疗(“放化疗”)目前是标准的治疗方法。瘤内(IT)基于 CT 的放化疗有可能克服传统全身 CT-RT(副作用)的局限性。为了最大限度地发挥 IT CT-RT 的益处,我们实验室之前开发了一种辐射控制的药物释放制剂,其中抗癌药物紫杉醇(PTX)和放射发光 CaWO(CWO)纳米颗粒(NPs)与聚乙二醇-聚乳酸(PEG-PLA)嵌段共聚物(“PEG-PLA/CWO/PTX NPs”)共包封。这些 PEG-PLA/CWO/PTX NPs 能够实现 PTX 的辐射控制释放,并能够在单次 IT 注射后至少持续一个月产生持续的治疗效果。本文重点讨论了我们最近发现的紫杉醇(PTX)立体化学结构对这种 PEG-PLA/CWO/PTX NP 制剂疗效的影响。通过二维异核/同核 NMR、拉曼光谱和圆二色性测量对两种不同的 PTX 化合物(Samyang Biopharmaceuticals 的“PTX-S”和 Biotang 的“PTX-B”)的立体化学差异进行了表征。发现 PTX 立体化学的差异会显著影响其水溶性(WS);PTX-S(WS≈4.69μg/mL)的水溶性约为 PTX-B(WS≈0.25μg/mL)的 19 倍。当用作游离药物时,两种 PTX 化合物的癌细胞杀伤性能相似。然而,细微的立体化学差异显著影响了它们从 PEG-PLA/CWO/PTX NPs 中释放的 X 射线触发动力学;水溶性更高的 PTX-S 释放速度快于水溶性较低的 PTX-B。这种差异在 IT 药代动力学中表现出来,最终在荷人肿瘤异种移植研究中用 PEG-PLA/CWO/PTX NPs+X 射线治疗的试验动物(小鼠)的存活率中表现出来;在短时间内(<1 个月),同时使用 PEG-PLA/CWO/PTX-S NPs 会产生更大的肿瘤抑制作用,而 PEG-PLA/CWO/PTX-B NPs 则具有更长的放射增敏作用。这项研究证明了药物立体化学在基于控制释放制剂的治疗中的重要性。