Suppr超能文献

质谱分析揭示蛋白激酶CK2通过环状和线性组装形成高阶寡聚体。

Mass Spectrometry Reveals Protein Kinase CK2 High-Order Oligomerization via the Circular and Linear Assembly.

作者信息

Seetoh Wei-Guang, Chan Daniel Shiu-Hin, Matak-Vinković Dijana, Abell Chris

机构信息

Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, United Kingdom.

出版信息

ACS Chem Biol. 2016 Jun 17;11(6):1511-7. doi: 10.1021/acschembio.6b00064. Epub 2016 Mar 29.

Abstract

CK2 is an intrinsically active protein kinase that is crucial for cellular viability. However, conventional kinase regulatory mechanisms do not apply to CK2, and its mode of regulation remains elusive. Interestingly, CK2 is known to undergo reversible ionic-strength-dependent oligomerization. Furthermore, a regulatory mechanism based on autoinhibitory oligomerization has been postulated on the basis of the observation of circular trimeric oligomers and linear CK2 assemblies in various crystal structures. Here, we employ native mass spectrometry to monitor the assembly of oligomeric CK2 species in an ionic-strength-dependent manner. A subsequent combination of ion mobility spectrometry-mass spectrometry and hydrogen-deuterium exchange mass spectrometry techniques was used to analyze the conformation of CK2 oligomers. Our findings support ionic-strength-dependent CK2 oligomerization, demonstrate the transient nature of the α/β interaction, and show that CK2 oligomerization proceeds via both the circular and linear assembly.

摘要

CK2是一种对细胞生存能力至关重要的内在活性蛋白激酶。然而,传统的激酶调节机制并不适用于CK2,其调节模式仍然难以捉摸。有趣的是,已知CK2会发生可逆的离子强度依赖性寡聚化。此外,基于在各种晶体结构中观察到的环状三聚体寡聚体和线性CK2组装体,推测了一种基于自抑制寡聚化的调节机制。在这里,我们采用原生质谱以离子强度依赖性方式监测寡聚CK2物种的组装。随后结合离子淌度光谱-质谱和氢-氘交换质谱技术来分析CK2寡聚体的构象。我们的研究结果支持离子强度依赖性CK2寡聚化,证明了α/β相互作用的短暂性,并表明CK2寡聚化通过环状和线性组装两种方式进行。

相似文献

1
Mass Spectrometry Reveals Protein Kinase CK2 High-Order Oligomerization via the Circular and Linear Assembly.
ACS Chem Biol. 2016 Jun 17;11(6):1511-7. doi: 10.1021/acschembio.6b00064. Epub 2016 Mar 29.
2
Characterization of the oligomeric states of the CK2 αβ holoenzyme in solution.
Biochem J. 2017 Jul 6;474(14):2405-2416. doi: 10.1042/BCJ20170189.
3
Active form of the protein kinase CK2 α2β2 holoenzyme is a strong complex with symmetric architecture.
ACS Chem Biol. 2014 Feb 21;9(2):366-71. doi: 10.1021/cb400771y. Epub 2013 Nov 11.
4
The protein kinase CK2(Andante) holoenzyme structure supports proposed models of autoregulation and trans-autophosphorylation.
J Mol Biol. 2014 May 1;426(9):1871-82. doi: 10.1016/j.jmb.2014.02.018. Epub 2014 Mar 1.
5
Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights.
Cell Mol Life Sci. 2009 Jun;66(11-12):1800-16. doi: 10.1007/s00018-009-9149-8.
6
Structural determinants of protein kinase CK2 regulation by autoinhibitory polymerization.
ACS Chem Biol. 2012 Jul 20;7(7):1158-63. doi: 10.1021/cb300054n. Epub 2012 Apr 20.
7
Protein kinase CK2: a new view of an old molecular complex.
EMBO Rep. 2004 Apr;5(4):351-5. doi: 10.1038/sj.embor.7400115.
9
Evidence for aggregation of protein kinase CK2 in the cell: a novel strategy for studying CK2 holoenzyme interaction by BRET(2).
Mol Cell Biochem. 2014 Dec;397(1-2):285-93. doi: 10.1007/s11010-014-2196-y. Epub 2014 Aug 23.
10
First inactive conformation of CK2 alpha, the catalytic subunit of protein kinase CK2.
J Mol Biol. 2009 Mar 13;386(5):1212-21. doi: 10.1016/j.jmb.2009.01.033. Epub 2009 Jan 24.

引用本文的文献

1
Mechanism of CK2 Inhibition by a Ruthenium-Based Polyoxometalate.
Front Mol Biosci. 2022 Jun 2;9:906390. doi: 10.3389/fmolb.2022.906390. eCollection 2022.
3
CK2 Regulation: Perspectives in 2021.
Biomedicines. 2021 Sep 30;9(10):1361. doi: 10.3390/biomedicines9101361.
4
Enhanced oligomerization of full-length RAGE by synergy of the interaction of its domains.
Sci Rep. 2019 Dec 30;9(1):20332. doi: 10.1038/s41598-019-56993-9.
5
Structures, functions, and mechanisms of filament forming enzymes: a renaissance of enzyme filamentation.
Biophys Rev. 2019 Dec;11(6):927-994. doi: 10.1007/s12551-019-00602-6. Epub 2019 Nov 16.
6
7
TORC1 organized in inhibited domains (TOROIDs) regulate TORC1 activity.
Nature. 2017 Oct 12;550(7675):265-269. doi: 10.1038/nature24021. Epub 2017 Oct 4.

本文引用的文献

1
Development of a high-throughput screening-compatible assay to identify inhibitors of the CK2α/CK2β interaction.
Anal Biochem. 2015 Jan 1;468:4-14. doi: 10.1016/j.ab.2014.09.003. Epub 2014 Sep 16.
2
Evidence for aggregation of protein kinase CK2 in the cell: a novel strategy for studying CK2 holoenzyme interaction by BRET(2).
Mol Cell Biochem. 2014 Dec;397(1-2):285-93. doi: 10.1007/s11010-014-2196-y. Epub 2014 Aug 23.
3
The protein kinase CK2(Andante) holoenzyme structure supports proposed models of autoregulation and trans-autophosphorylation.
J Mol Biol. 2014 May 1;426(9):1871-82. doi: 10.1016/j.jmb.2014.02.018. Epub 2014 Mar 1.
4
Active form of the protein kinase CK2 α2β2 holoenzyme is a strong complex with symmetric architecture.
ACS Chem Biol. 2014 Feb 21;9(2):366-71. doi: 10.1021/cb400771y. Epub 2013 Nov 11.
5
First structure of protein kinase CK2 catalytic subunit with an effective CK2β-competitive ligand.
ACS Chem Biol. 2013 May 17;8(5):901-7. doi: 10.1021/cb3007133. Epub 2013 Mar 18.
6
Structural determinants of protein kinase CK2 regulation by autoinhibitory polymerization.
ACS Chem Biol. 2012 Jul 20;7(7):1158-63. doi: 10.1021/cb300054n. Epub 2012 Apr 20.
7
New protein kinase CK2 inhibitors: jumping out of the catalytic box.
Chem Biol. 2009 Feb 27;16(2):112-20. doi: 10.1016/j.chembiol.2009.01.004.
9
Identification of polyoxometalates as nanomolar noncompetitive inhibitors of protein kinase CK2.
Chem Biol. 2008 Jul 21;15(7):683-92. doi: 10.1016/j.chembiol.2008.05.018.
10
CIGB-300, a novel proapoptotic peptide that impairs the CK2 phosphorylation and exhibits anticancer properties both in vitro and in vivo.
Mol Cell Biochem. 2008 Sep;316(1-2):163-7. doi: 10.1007/s11010-008-9814-5. Epub 2008 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验