Suppr超能文献

环磷酸腺苷-蛋白激酶A(cAMP-PKA)信号通路的激活拮抗二甲双胍对肝糖生成的抑制作用。

Activation of the cAMP-PKA pathway Antagonizes Metformin Suppression of Hepatic Glucose Production.

作者信息

He Ling, Chang Evan, Peng Jinghua, An Hongying, McMillin Sara M, Radovick Sally, Stratakis Constantine A, Wondisford Fredric E

机构信息

From the Division of Metabolism, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287,

From the Division of Metabolism, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287.

出版信息

J Biol Chem. 2016 May 13;291(20):10562-70. doi: 10.1074/jbc.M116.719666. Epub 2016 Mar 21.

Abstract

Metformin is the most commonly prescribed oral anti-diabetic agent worldwide. Surprisingly, about 35% of diabetic patients either lack or have a delayed response to metformin treatment, and many patients become less responsive to metformin over time. It remains unknown how metformin resistance or insensitivity occurs. Recently, we found that therapeutic metformin concentrations suppressed glucose production in primary hepatocytes through AMPK; activation of the cAMP-PKA pathway negatively regulates AMPK activity by phosphorylating AMPKα subunit at Ser-485, which in turn reduces AMPK activity. In this study, we find that metformin failed to suppress glucose production in primary hepatocytes with constitutively activated PKA and did not improve hyperglycemia in mice with hyperglucagonemia. Expression of the AMPKα1(S485A) mutant, which is unable to be phosphorylated by PKA, increased both AMPKα activation and the suppression of glucose production in primary hepatocytes treated with metformin. Intriguingly, salicylate/aspirin prevents the phosphorylation of AMPKα at Ser-485, blocks cAMP-PKA negative regulation of AMPK, and improves metformin resistance. We propose that aspirin/salicylate may augment metformin's hepatic action to suppress glucose production.

摘要

二甲双胍是全球最常用的口服抗糖尿病药物。令人惊讶的是,约35%的糖尿病患者对二甲双胍治疗缺乏反应或反应延迟,而且许多患者随着时间的推移对二甲双胍的反应性会降低。二甲双胍耐药或不敏感是如何发生的尚不清楚。最近,我们发现治疗浓度的二甲双胍通过AMPK抑制原代肝细胞中的葡萄糖生成;cAMP-PKA途径的激活通过在Ser-485位点磷酸化AMPKα亚基来负调节AMPK活性,进而降低AMPK活性。在本研究中,我们发现二甲双胍无法抑制PKA持续激活的原代肝细胞中的葡萄糖生成,也无法改善高胰高血糖素血症小鼠的高血糖症。不能被PKA磷酸化的AMPKα1(S485A)突变体的表达增加了二甲双胍处理的原代肝细胞中的AMPKα激活以及对葡萄糖生成的抑制。有趣的是,水杨酸盐/阿司匹林可防止AMPKα在Ser-485位点的磷酸化,阻断cAMP-PKA对AMPK的负调节,并改善二甲双胍耐药性。我们提出阿司匹林/水杨酸盐可能增强二甲双胍抑制葡萄糖生成的肝脏作用。

相似文献

1
Activation of the cAMP-PKA pathway Antagonizes Metformin Suppression of Hepatic Glucose Production.
J Biol Chem. 2016 May 13;291(20):10562-70. doi: 10.1074/jbc.M116.719666. Epub 2016 Mar 21.
3
Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP.
Nature. 2013 Feb 14;494(7436):256-60. doi: 10.1038/nature11808. Epub 2013 Jan 6.
4
Differential AMPK phosphorylation by glucagon and metformin regulates insulin signaling in human hepatic cells.
Biochem Biophys Res Commun. 2014 May 16;447(4):569-73. doi: 10.1016/j.bbrc.2014.04.031. Epub 2014 Apr 13.
5
The importance of the AMPK gamma 1 subunit in metformin suppression of liver glucose production.
Sci Rep. 2020 Jun 26;10(1):10482. doi: 10.1038/s41598-020-67030-5.
6
Metformin activates AMP-activated protein kinase by promoting formation of the αβγ heterotrimeric complex.
J Biol Chem. 2015 Feb 6;290(6):3793-802. doi: 10.1074/jbc.M114.604421. Epub 2014 Dec 23.
8
Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status.
Diabetologia. 2011 Dec;54(12):3101-10. doi: 10.1007/s00125-011-2311-5. Epub 2011 Sep 23.
9
Role of AMP-activated protein kinase in mechanism of metformin action.
J Clin Invest. 2001 Oct;108(8):1167-74. doi: 10.1172/JCI13505.
10
Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK.
Cell Rep. 2019 Nov 5;29(6):1511-1523.e5. doi: 10.1016/j.celrep.2019.09.070.

引用本文的文献

1
Targeting negative phosphorylation to activate AMPK.
Endocr Connect. 2025 Jul 17;14(7). doi: 10.1530/EC-25-0260. Print 2025 Jul 1.
3
Effect of submaximal and maximal training on serum levels of asprosin, metabolic parameters and body composition in overweight and obese women.
J Diabetes Metab Disord. 2025 Apr 5;24(1):96. doi: 10.1007/s40200-025-01608-6. eCollection 2025 Jun.
4
Hepatic PKA Mediates Liver and Pancreatic α-Cell Cross Talk.
Diabetes. 2025 Jun 1;74(6):885-897. doi: 10.2337/db24-0958.
5
TGF-β1 Signaling Impairs Metformin Action on Glycemic Control.
Int J Mol Sci. 2024 Feb 19;25(4):2424. doi: 10.3390/ijms25042424.
6
Blocking AMPKαS496 phosphorylation improves mitochondrial dynamics and hyperglycemia in aging and obesity.
Cell Chem Biol. 2023 Dec 21;30(12):1585-1600.e6. doi: 10.1016/j.chembiol.2023.09.017. Epub 2023 Oct 26.
7
Prenatal low-dose methylmercury exposure causes premature neuronal differentiation and autism-like behaviors in a rodent model.
iScience. 2023 Jan 31;26(3):106093. doi: 10.1016/j.isci.2023.106093. eCollection 2023 Mar 17.
8
Cryo-EM structure of orphan G protein-coupled receptor GPR21.
MedComm (2020). 2023 Jan 25;4(1):e205. doi: 10.1002/mco2.205. eCollection 2023 Feb.
9
An update on mode of action of metformin in modulation of meta-inflammation and inflammaging.
Pharmacol Rep. 2022 Apr;74(2):310-322. doi: 10.1007/s43440-021-00334-z. Epub 2022 Jan 24.
10
Emerging Role of cAMP/AMPK Signaling.
Cells. 2022 Jan 17;11(2):308. doi: 10.3390/cells11020308.

本文引用的文献

1
Current understanding of metformin effect on the control of hyperglycemia in diabetes.
J Endocrinol. 2016 Mar;228(3):R97-106. doi: 10.1530/JOE-15-0447. Epub 2016 Jan 7.
3
Metformin activates AMP-activated protein kinase by promoting formation of the αβγ heterotrimeric complex.
J Biol Chem. 2015 Feb 6;290(6):3793-802. doi: 10.1074/jbc.M114.604421. Epub 2014 Dec 23.
4
Metformin pharmacogenomics: current status and future directions.
Diabetes. 2014 Aug;63(8):2590-9. doi: 10.2337/db13-1367.
6
Potential biomarker of metformin action.
J Endocrinol. 2014 Jun;221(3):363-9. doi: 10.1530/JOE-14-0084. Epub 2014 Mar 17.
7
Control of Foxo1 gene expression by co-activator P300.
J Biol Chem. 2014 Feb 14;289(7):4326-33. doi: 10.1074/jbc.M113.540500. Epub 2013 Dec 30.
8
Metformin improves healthspan and lifespan in mice.
Nat Commun. 2013;4:2192. doi: 10.1038/ncomms3192.
9
Transcriptional co-activator p300 maintains basal hepatic gluconeogenesis.
J Biol Chem. 2012 Sep 14;287(38):32069-77. doi: 10.1074/jbc.M112.385864. Epub 2012 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验