Suppr超能文献

用于增强光电化学水氧化的锡/铍顺序共掺杂赤铁矿光阳极:铍(2+)作为共掺杂剂的作用

Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be(2+) as co-dopant.

作者信息

Annamalai Alagappan, Lee Hyun Hwi, Choi Sun Hee, Lee Su Yong, Gracia-Espino Eduardo, Subramanian Arunprabaharan, Park Jaedeuk, Kong Ki-Jeong, Jang Jum Suk

机构信息

Division of Biotechnology, Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea.

Department of Physics, Umeå University, Umeå, SE-901 87, Sweden.

出版信息

Sci Rep. 2016 Mar 23;6:23183. doi: 10.1038/srep23183.

Abstract

For ex-situ co-doping methods, sintering at high temperatures enables rapid diffusion of Sn(4+) and Be(2+) dopants into hematite (α-Fe2O3) lattices, without altering the nanorod morphology or damaging their crystallinity. Sn/Be co-doping results in a remarkable enhancement in photocurrent (1.7 mA/cm(2)) compared to pristine α-Fe2O3 (0.7 mA/cm(2)), and Sn(4+) mono-doped α-Fe2O3 photoanodes (1.0 mA/cm(2)). From first-principles calculations, we found that Sn(4+) doping induced a shallow donor level below the conduction band minimum, which does not contribute to increase electrical conductivity and photocurrent because of its localized nature. Additionally, Sn(4+)-doping induce local micro-strain and a decreased Fe-O bond ordering. When Be(2+) was co-doped with Sn(4+)-doped α-Fe2O3 photoanodes, the conduction band recovered its original state, without localized impurities peaks, also a reduction in micro-strain and increased Fe-O bond ordering is observed. Also the sequence in which the ex-situ co-doping is carried out is very crucial, as Be/Sn co-doping sequence induces many under-coordinated O atoms resulting in a higher micro-strain and lower charge separation efficiency resulting undesired electron recombination. Here, we perform a detailed systematic characterization using XRD, FESEM, XPS and comprehensive electrochemical and photoelectrochemical studies, along with sophisticated synchrotron diffraction studies and extended X-ray absorption fine structure.

摘要

对于非原位共掺杂方法,高温烧结可使Sn(4+)和Be(2+)掺杂剂快速扩散到赤铁矿(α-Fe2O3)晶格中,而不会改变纳米棒形态或破坏其结晶度。与原始α-Fe2O3(0.7 mA/cm2)和Sn(4+)单掺杂α-Fe2O3光阳极(1.0 mA/cm2)相比,Sn/Be共掺杂导致光电流显著增强(1.7 mA/cm2)。从第一性原理计算中,我们发现Sn(4+)掺杂在导带最小值以下诱导了一个浅施主能级,由于其局域性质,该能级无助于提高电导率和光电流。此外,Sn(4+)掺杂会引起局部微应变和Fe-O键有序度降低。当Be(2+)与Sn(4+)掺杂的α-Fe2O3光阳极共掺杂时,导带恢复到其原始状态,没有局域杂质峰,同时观察到微应变减小和Fe-O键有序度增加。此外,非原位共掺杂的顺序非常关键,因为Be/Sn共掺杂顺序会诱导许多配位不足的O原子,导致更高的微应变和更低的电荷分离效率,从而产生不希望的电子复合。在这里,我们使用XRD、FESEM、XPS以及全面的电化学和光电化学研究,以及复杂的同步加速器衍射研究和扩展X射线吸收精细结构进行了详细的系统表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5af/4804299/7d875b5d545f/srep23183-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验