Suppr超能文献

社会认知能力的自我报告和基于表现的个体差异测量对大规模神经网络功能的贡献。

Contributions of self-report and performance-based individual differences measures of social cognitive ability to large-scale neural network functioning.

作者信息

Smith Ryan, Alkozei Anna, Killgore William D S

机构信息

Department of Psychiatry, University of Arizona, 1501 N., Campbell Ave. Room 7304B, PO Box 245002, Tucson, AZ, 85724-5002, USA.

出版信息

Brain Imaging Behav. 2017 Jun;11(3):685-697. doi: 10.1007/s11682-016-9545-2.

Abstract

Adaptive social behavior appears to require flexible interaction between multiple large-scale brain networks, including the executive control network (ECN), the default mode network (DMN), and the salience network (SN), as well as interactions with the perceptual processing systems these networks function to modulate. Highly connected cortical "hub" regions are also thought to facilitate interactions between these networks, including the dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), anterior cingulate cortex (ACC), and anterior insula (AI). However, less is presently known about the relationship between these network functions and individual differences in social-cognitive abilities. In the present study, 23 healthy adults (12 female) underwent functional magnetic resonance imaging (fMRI) while performing a visually based social judgment task (requiring the evaluation of social dominance in faces). Participants also completed both self-report and performance-based measures of emotional intelligence (EI), as well as measures of personality and facial perception ability. During scanning, social judgment, relative to a control condition involving simple perceptual judgment of facial features in the same stimuli, activated hub regions associated with each of the networks mentioned above (observed clusters included: bilateral DLPFC, DMPFC/ACC, AI, and ventral visual cortex). Interestingly, self-reported and performance-based measures of social-cognitive ability showed opposing associations with these patterns of activation. Specifically, lower self-reported EI and lower openness in personality both independently predicted greater activation within hub regions of the SN, DMN, and ECN (i.e., the DLPFC, DMPFC/ACC, and AI clusters); in contrast, in the same analyses greater scores on performance-based EI measures and on facial perception tasks independently predicted greater activation within hub regions of the SN and ECN (the DLPFC and AI clusters), and also in the ventral visual cortex. These findings suggest that lower confidence in one's own social-cognitive abilities may promote the allocation of greater cognitive resources to, and improve the performance of, social-cognitive functions.

摘要

适应性社会行为似乎需要多个大规模脑网络之间灵活的相互作用,这些网络包括执行控制网络(ECN)、默认模式网络(DMN)和突显网络(SN),以及与这些网络旨在调节的知觉处理系统之间的相互作用。高度连接的皮质“枢纽”区域也被认为有助于这些网络之间的相互作用,包括背外侧前额叶皮质(DLPFC)、背内侧前额叶皮质(DMPFC)、前扣带回皮质(ACC)和前脑岛(AI)。然而,目前对于这些网络功能与社会认知能力个体差异之间的关系了解较少。在本研究中,23名健康成年人(12名女性)在进行基于视觉的社会判断任务(要求对面部的社会优势进行评估)时接受了功能磁共振成像(fMRI)检查。参与者还完成了自我报告和基于表现的情商(EI)测量,以及人格和面部感知能力的测量。在扫描过程中,与涉及对相同刺激的面部特征进行简单知觉判断的对照条件相比,社会判断激活了与上述每个网络相关的枢纽区域(观察到的簇包括:双侧DLPFC、DMPFC/ACC、AI和腹侧视觉皮质)。有趣的是,自我报告和基于表现的社会认知能力测量结果与这些激活模式呈现出相反的关联。具体而言,较低的自我报告EI和较低的人格开放性均独立预测了SN、DMN和ECN枢纽区域(即DLPFC、DMPFC/ACC和AI簇)内更强的激活;相反,在相同分析中,基于表现的EI测量得分和面部感知任务得分越高,独立预测了SN和ECN枢纽区域(DLPFC和AI簇)以及腹侧视觉皮质内更强的激活。这些发现表明,对自身社会认知能力较低的信心可能会促进将更多认知资源分配给社会认知功能,并提高其表现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验