Suppr超能文献

具有多个状态的尤尔树的拓扑结构与推断

Topology and inference for Yule trees with multiple states.

作者信息

Popovic Lea, Rivas Mariolys

机构信息

Department of Mathematics and Statistics, Concordia University, Montreal, QC, H3G 1M8, Canada.

出版信息

J Math Biol. 2016 Nov;73(5):1251-1291. doi: 10.1007/s00285-016-0992-6. Epub 2016 Mar 23.

Abstract

We introduce two models for random trees with multiple states motivated by studies of trait dependence in the evolution of species. Our discrete time model, the multiple state ERM tree, is a generalization of Markov propagation models on a random tree generated by a binary search or 'equal rates Markov' mechanism. Our continuous time model, the multiple state Yule tree, is a generalization of the tree generated by a pure birth or Yule process to the tree generated by multi-type branching processes. We study state dependent topological properties of these two random tree models. We derive asymptotic results that allow one to infer model parameters from data on states at the leaves and at branch-points that are one step away from the leaves.

摘要

我们引入了两种用于多状态随机树的模型,这些模型是受物种进化中特征依赖性研究的启发而提出的。我们的离散时间模型,即多状态ERM树,是由二分搜索或“等速率马尔可夫”机制生成的随机树上马尔可夫传播模型的推广。我们的连续时间模型,即多状态尤尔树,是由纯出生或尤尔过程生成的树到由多类型分支过程生成的树的推广。我们研究了这两种随机树模型的状态依赖拓扑性质。我们推导了渐近结果,这些结果允许人们从叶子节点以及距离叶子节点一步之遥的分支点处的状态数据推断模型参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验