1 Center for Craniofacial and Molecular Biology (CCMB), Ostrow School of Dentistry, University of Southern California , Los Angeles, California.
Tissue Eng Part A. 2014 Feb;20(3-4):611-21. doi: 10.1089/ten.TEA.2013.0229. Epub 2013 Nov 6.
Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications.
间充质干细胞 (MSCs) 为骨再生提供了一种优于当前治疗方式的有利治疗选择。然而,将 MSCs 递送到缺陷部位并保持高 MSC 存活率仍然是 MSC 介导的骨再生中的一个关键挑战。在这里,我们测试了包被在新型 RGD(精氨酸-甘氨酸-天冬氨酸三肽)偶联藻酸盐微囊化系统中的牙周膜干细胞 (PDLSCs) 和牙龈间充质干细胞 (GMSCs) 的体外和体内骨再生能力。在免疫缺陷小鼠中创建了 5 毫米直径的临界尺寸颅骨缺损,并将包被在 RGD 修饰的藻酸盐微球中的 PDLSCs 和 GMSCs 移植到缺陷部位。在移植后 8 周,使用 microCT 和组织学分析评估新骨形成。结果证实,与具有更大直径的不含 RGD 的藻酸盐水凝胶微球相比,我们的微囊化系统显著提高了 MSC 在体外的活力和成骨分化能力。结果证实 PDLSCs 能够通过促进矿化组织的形成来修复颅骨缺损,而 GMSCs 显示出明显较低的成骨分化能力。此外,结果表明,RGD 偶联的藻酸盐支架促进了口腔 MSCs 向成骨细胞谱系的体外和体内分化,这通过成骨标志物 Runx2、ALP 和骨钙素的表达来评估。总之,这些结果首次表明,包被在 RGD 修饰的藻酸盐支架中的源自口腔组织的 MSCs 具有颅面骨再生的潜力。这种治疗方式在牙科和骨科方面有许多潜在的应用。