Suppr超能文献

使用PSEA-Quant进行基于定量质谱的蛋白质组学的蛋白质集富集分析。

Using PSEA-Quant for Protein Set Enrichment Analysis of Quantitative Mass Spectrometry-Based Proteomics.

作者信息

Lavallée-Adam Mathieu, Yates John R

机构信息

Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California.

Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California.

出版信息

Curr Protoc Bioinformatics. 2016 Mar 24;53:13.28.1-13.28.16. doi: 10.1002/0471250953.bi1328s53.

Abstract

PSEA-Quant analyzes quantitative mass spectrometry-based proteomics datasets to identify enrichments of annotations contained in repositories such as the Gene Ontology and Molecular Signature databases. It allows users to identify the annotations that are significantly enriched for reproducibly quantified high abundance proteins. PSEA-Quant is available on the Web and as a command-line tool. It is compatible with all label-free and isotopic labeling-based quantitative proteomics methods. This protocol describes how to use PSEA-Quant and interpret its output. The importance of each parameter as well as troubleshooting approaches are also discussed. © 2016 by John Wiley & Sons, Inc.

摘要

PSEA-Quant分析基于定量质谱的蛋白质组学数据集,以识别诸如基因本体论和分子特征数据库等存储库中所含注释的富集情况。它允许用户识别在可重复定量的高丰度蛋白质中显著富集的注释。PSEA-Quant可通过网络获取,也有命令行工具版本。它与所有基于无标记和同位素标记的定量蛋白质组学方法兼容。本方案描述了如何使用PSEA-Quant并解读其输出结果。还讨论了每个参数的重要性以及故障排除方法。© 2016约翰威立父子公司版权所有

相似文献

8
Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics.蛋白质组学中串联质谱的数据分析与生物信息学工具
Physiol Genomics. 2008 Mar 14;33(1):18-25. doi: 10.1152/physiolgenomics.00298.2007. Epub 2008 Jan 22.

本文引用的文献

3
Ensembl 2015.Ensembl 2015.
Nucleic Acids Res. 2015 Jan;43(Database issue):D662-9. doi: 10.1093/nar/gku1010. Epub 2014 Oct 28.
4
UniProt: a hub for protein information.通用蛋白质数据库(UniProt):蛋白质信息中心。
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12. doi: 10.1093/nar/gku989. Epub 2014 Oct 27.
8
Molecular signatures database (MSigDB) 3.0.分子特征数据库(MSigDB)3.0。
Bioinformatics. 2011 Jun 15;27(12):1739-40. doi: 10.1093/bioinformatics/btr260. Epub 2011 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验