Suppr超能文献

亮氨酸诱导的Sestrin2去磷酸化促进mTORC1激活。

Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation.

作者信息

Kimball Scot R, Gordon Bradley S, Moyer Jenna E, Dennis Michael D, Jefferson Leonard S

机构信息

The Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, PO Box 850, Hershey, PA 17033, United States.

The Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, PO Box 850, Hershey, PA 17033, United States.

出版信息

Cell Signal. 2016 Aug;28(8):896-906. doi: 10.1016/j.cellsig.2016.03.008. Epub 2016 Mar 21.

Abstract

The studies described herein were designed to explore the role of Sestrin2 in mediating the selective action of leucine to activate mTORC1. The results demonstrate that Sestrin2 is a phosphoprotein and that its phosphorylation state is responsive to the availability of leucine, but not other essential amino acids. Moreover, leucine availability-induced alterations in Sestrin2 phosphorylation correlated temporally and dose dependently with the activation state of mTORC1, there being a reciprocal relationship between the degree of phosphorylation of Sestrin2 and the extent of repression of mTORC1. With leucine deprivation, Sestrin2 became more highly phosphorylated and interacted more strongly with proteins of the GATOR2 complex. Notably, in cells lacking the protein kinase ULK1, the activation state of mTORC1 was elevated in leucine-deficient medium, such that the effect of re-addition of the amino acid was blunted. In contrast, overexpression of ULK1 led to hyperphosphorylation of Sestrin2 and enhanced its interaction with GATOR2. Neither rapamycin nor Torin2 had any effect on Sestrin2 phosphorylation, suggesting that leucine deprivation-induced repression of mTORC1 was not responsible for the action of ULK1 on Sestrin2. Mass spectrometry analysis of Sestrin2 revealed three phosphorylation sites that are conserved across mammalian species. Mutation of the three sites to phospho-mimetic amino acids in exogenously expressed Sestrin2 promoted its interaction with GATOR2 and dramatically repressed mTORC1 even in the presence of leucine. Overall, the results support a model in which leucine selectively promotes dephosphorylation of Sestrin2, causing it to dissociate from and thereby activate GATOR2, leading to activation of mTORC1.

摘要

本文所述的研究旨在探究Sestrin2在介导亮氨酸激活mTORC1的选择性作用中的角色。结果表明,Sestrin2是一种磷蛋白,其磷酸化状态对亮氨酸的可利用性有反应,但对其他必需氨基酸无反应。此外,亮氨酸可利用性诱导的Sestrin2磷酸化变化在时间和剂量上与mTORC1的激活状态相关,Sestrin2的磷酸化程度与mTORC1的抑制程度之间存在反比关系。在亮氨酸缺乏时,Sestrin2磷酸化程度更高,且与GATOR2复合物的蛋白质相互作用更强。值得注意的是,在缺乏蛋白激酶ULK1的细胞中,亮氨酸缺乏培养基中mTORC1的激活状态升高,使得重新添加氨基酸的效果减弱。相反,ULK1的过表达导致Sestrin2过度磷酸化,并增强其与GATOR2的相互作用。雷帕霉素和Torin2对Sestrin2磷酸化均无任何影响,这表明亮氨酸缺乏诱导的mTORC1抑制并非ULK1对Sestrin2作用的原因。对Sestrin2的质谱分析揭示了三个在哺乳动物物种中保守的磷酸化位点。在外源表达的Sestrin2中将这三个位点突变为模拟磷酸化的氨基酸会促进其与GATOR2的相互作用,并且即使在有亮氨酸存在的情况下也会显著抑制mTORC1。总体而言,这些结果支持了一个模型,即亮氨酸选择性地促进Sestrin2的去磷酸化,使其与GATOR2解离从而激活GATOR2,进而导致mTORC1的激活。

相似文献

1
Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation.
Cell Signal. 2016 Aug;28(8):896-906. doi: 10.1016/j.cellsig.2016.03.008. Epub 2016 Mar 21.
2
Sestrin2 is a leucine sensor for the mTORC1 pathway.
Science. 2016 Jan 1;351(6268):43-8. doi: 10.1126/science.aab2674. Epub 2015 Oct 8.
3
Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway.
Science. 2016 Jan 1;351(6268):53-8. doi: 10.1126/science.aad2087. Epub 2015 Nov 19.
4
GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2.
Genes Dev. 2015 Nov 15;29(22):2331-6. doi: 10.1101/gad.269324.115. Epub 2015 Nov 5.
5
Sestrin2 inhibits mTORC1 through modulation of GATOR complexes.
Sci Rep. 2015 Mar 30;5:9502. doi: 10.1038/srep09502.
6
The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1.
Cell Rep. 2014 Oct 9;9(1):1-8. doi: 10.1016/j.celrep.2014.09.014. Epub 2014 Sep 25.
7
AMPK Inhibits ULK1-Dependent Autophagosome Formation and Lysosomal Acidification via Distinct Mechanisms.
Mol Cell Biol. 2018 Apr 30;38(10). doi: 10.1128/MCB.00023-18. Print 2018 May 15.
8
Effects of Leucine Ingestion and Contraction on the Sestrin/GATOR2 Pathway and mTORC1 Activation in Rat Fast-Twitch muscle.
J Nutr. 2023 Aug;153(8):2228-2236. doi: 10.1016/j.tjnut.2023.06.011. Epub 2023 Jun 14.
9
Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids.
Cell Signal. 2014 Sep;26(9):1918-27. doi: 10.1016/j.cellsig.2014.04.019. Epub 2014 May 2.
10
Amino Acid-Induced Activation of mTORC1 in Rat Liver Is Attenuated by Short-Term Consumption of a High-Fat Diet.
J Nutr. 2015 Nov;145(11):2496-502. doi: 10.3945/jn.115.215491. Epub 2015 Sep 23.

引用本文的文献

3
Animal amino acid sensor - A review.
Anim Biosci. 2025 Feb;38(2):198-208. doi: 10.5713/ab.24.0366. Epub 2024 Aug 26.
5
Modulation of Leucine Sensors to Mitigate Antipsychotics-Induced Metabolic Syndrome: A New Vista.
ACS Pharmacol Transl Sci. 2023 Dec 13;7(1):294-297. doi: 10.1021/acsptsci.3c00319. eCollection 2024 Jan 12.
6
Sestrin2 in diabetes and diabetic complications.
Front Endocrinol (Lausanne). 2023 Oct 18;14:1274686. doi: 10.3389/fendo.2023.1274686. eCollection 2023.
7
The duration of glucocorticoid treatment alters the anabolic response to high-force muscle contractions.
J Appl Physiol (1985). 2023 Jul 1;135(1):183-195. doi: 10.1152/japplphysiol.00113.2023. Epub 2023 Jun 8.
8
Association between the antioxidant properties of SESN proteins and anti-cancer therapies.
Amino Acids. 2023 Jul;55(7):835-851. doi: 10.1007/s00726-023-03281-6. Epub 2023 Jun 7.
9
Glucose-Induced Activation of mTORC1 is Associated with Hexokinase2 Binding to Sestrins in HEK293T Cells.
J Nutr. 2023 Apr;153(4):988-998. doi: 10.1016/j.tjnut.2022.11.021. Epub 2022 Dec 22.
10
Sestrin2: multifaceted functions, molecular basis, and its implications in liver diseases.
Cell Death Dis. 2023 Feb 25;14(2):160. doi: 10.1038/s41419-023-05669-4.

本文引用的文献

2
Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway.
Science. 2016 Jan 1;351(6268):53-8. doi: 10.1126/science.aad2087. Epub 2015 Nov 19.
3
GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2.
Genes Dev. 2015 Nov 15;29(22):2331-6. doi: 10.1101/gad.269324.115. Epub 2015 Nov 5.
4
Sestrin2 is a leucine sensor for the mTORC1 pathway.
Science. 2016 Jan 1;351(6268):43-8. doi: 10.1126/science.aab2674. Epub 2015 Oct 8.
5
Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A.
Nat Commun. 2015 Aug 27;6:8048. doi: 10.1038/ncomms9048.
6
Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9.
Mol Cell Biol. 2015 Jul;35(14):2479-94. doi: 10.1128/MCB.00125-15. Epub 2015 May 11.
7
mTOR: a pharmacologic target for autophagy regulation.
J Clin Invest. 2015 Jan;125(1):25-32. doi: 10.1172/JCI73939. Epub 2015 Jan 2.
8
Nutrient-sensing mechanisms and pathways.
Nature. 2015 Jan 15;517(7534):302-10. doi: 10.1038/nature14190.
9
Metabolism. Differential regulation of mTORC1 by leucine and glutamine.
Science. 2015 Jan 9;347(6218):194-8. doi: 10.1126/science.1259472. Epub 2015 Jan 7.
10
Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1.
Science. 2015 Jan 9;347(6218):188-94. doi: 10.1126/science.1257132. Epub 2015 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验