Laboratoire de Physique des Solides, CNRS, Universitè Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France.
Laboratory Micro & Nano-Carbon, Elettra - Sincrotrone Trieste S.C.p.A., s.s.14 Km 163.5, 34149 Trieste, Italy.
Nano Lett. 2016 Jun 8;16(6):3409-14. doi: 10.1021/acs.nanolett.5b02635. Epub 2016 May 12.
Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal-organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface. We demonstrate that that the hybrid interface can act on the topological protection of the surface and bury the Dirac cone below the first quintuple layer.
拓扑绝缘体是自旋电子学领域中极具应用前景的材料。通过将金属有机分子与拓扑绝缘体自旋动量锁定的表面态相互作用,可以为该领域带来新的视角,从而可以干扰增强或抑制与自旋电子学相关的特性,如自旋相干性。在这里,我们展示了角分辨光电子能谱 (ARPES) 和扫描隧道显微镜 (STM) 对典型的酞菁钴 (CoPc)/Bi2Se3 界面研究的结果。我们证明了该杂化界面可以作用于表面的拓扑保护,并将狄拉克锥掩埋在第一层五倍层以下。